亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电压 电气工程
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:927
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
6秒前
叶子宁完成签到,获得积分10
13秒前
莉莉斯完成签到 ,获得积分10
34秒前
50秒前
shhoing应助科研通管家采纳,获得10
54秒前
54秒前
shhoing应助科研通管家采纳,获得10
54秒前
BowieHuang应助科研通管家采纳,获得10
54秒前
楚楚完成签到 ,获得积分10
55秒前
1分钟前
sherry发布了新的文献求助10
1分钟前
隐形曼青应助sherry采纳,获得10
1分钟前
shentaii完成签到,获得积分10
1分钟前
Yyyyyyyyy发布了新的文献求助10
1分钟前
2分钟前
2分钟前
吕懿发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
koubi发布了新的文献求助10
2分钟前
2分钟前
season完成签到,获得积分10
2分钟前
犹豫的雁卉完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助Wei采纳,获得10
3分钟前
3分钟前
深情幻巧完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
酷波er应助善良的以亦采纳,获得10
4分钟前
英姑应助Yyyyyyyyy采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543288
求助须知:如何正确求助?哪些是违规求助? 4629401
关于积分的说明 14611196
捐赠科研通 4570722
什么是DOI,文献DOI怎么找? 2505884
邀请新用户注册赠送积分活动 1483112
关于科研通互助平台的介绍 1454464