Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电气工程 电压
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:71
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助江浪浪采纳,获得10
1秒前
小马甲应助qp采纳,获得10
1秒前
失眠傥完成签到,获得积分10
1秒前
昊男的宝贝完成签到,获得积分10
3秒前
ding应助gj2221423采纳,获得10
3秒前
科研通AI2S应助小鹏哥采纳,获得10
3秒前
月儿发布了新的文献求助10
3秒前
慕青应助TiAmo采纳,获得10
4秒前
努努力完成签到,获得积分10
4秒前
共享精神应助crazy采纳,获得10
5秒前
5秒前
5秒前
zxvcbnm发布了新的文献求助10
6秒前
额骨私发发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
kento发布了新的文献求助30
8秒前
算我运气好完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
hao完成签到 ,获得积分10
9秒前
科研通AI2S应助Ta沓如流星采纳,获得10
10秒前
出生完成签到,获得积分10
10秒前
10秒前
wanci应助智智采纳,获得10
11秒前
丿小智灬完成签到,获得积分10
11秒前
11秒前
xxxx完成签到,获得积分10
12秒前
jessie发布了新的文献求助10
12秒前
QCL发布了新的文献求助10
12秒前
DongWei95完成签到,获得积分10
12秒前
wxy发布了新的文献求助10
12秒前
13秒前
athena发布了新的文献求助30
13秒前
joicelee199完成签到,获得积分20
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825