Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电压 电气工程
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:438
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助猫猫侠采纳,获得10
刚刚
刚刚
刘先生发布了新的文献求助10
1秒前
卡恩完成签到 ,获得积分10
1秒前
2秒前
leslie花花发布了新的文献求助10
2秒前
2秒前
沉默的瑞宝关注了科研通微信公众号
2秒前
bkagyin应助沧笙踏歌采纳,获得10
2秒前
清脆寒香发布了新的文献求助10
3秒前
xiaozheng发布了新的文献求助10
3秒前
3秒前
4秒前
大师现在完成签到,获得积分10
4秒前
xiao双月发布了新的文献求助10
4秒前
7秒前
7秒前
hb完成签到,获得积分10
8秒前
Active发布了新的文献求助10
9秒前
高兴荔枝完成签到,获得积分10
9秒前
花里胡哨的花完成签到 ,获得积分10
9秒前
Wang发布了新的文献求助10
9秒前
大模型应助qwh采纳,获得10
10秒前
大师现在发布了新的文献求助10
10秒前
10秒前
尔安完成签到,获得积分10
11秒前
Coinish丶Fuhua完成签到,获得积分10
11秒前
慕青应助刘先生采纳,获得20
11秒前
葡萄小伊ovo完成签到 ,获得积分10
12秒前
Bryan应助calphen采纳,获得10
13秒前
晓天完成签到,获得积分10
16秒前
日富一日完成签到 ,获得积分10
16秒前
zizhuo2完成签到,获得积分10
16秒前
冰可乐发布了新的文献求助10
16秒前
Lucas应助xiaozheng采纳,获得10
17秒前
小马甲应助大师现在采纳,获得10
17秒前
19秒前
19秒前
hull完成签到,获得积分10
22秒前
yx_cheng应助迷人的芹菜采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498