亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

计算机科学 变压器 推论 安全性令牌 人工智能 计算机工程 理论计算机科学 工程类 计算机安全 电压 电气工程
作者
Albert Gu,Tri Dao
出处
期刊:Cornell University - arXiv 被引量:931
标识
DOI:10.48550/arxiv.2312.00752
摘要

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助harri采纳,获得10
3秒前
Bokuto发布了新的文献求助10
8秒前
10秒前
harri发布了新的文献求助10
15秒前
轻松元柏完成签到,获得积分10
19秒前
清脆的书包关注了科研通微信公众号
31秒前
harri完成签到,获得积分10
37秒前
44秒前
美满尔蓝完成签到,获得积分10
47秒前
P_Chem完成签到,获得积分10
48秒前
socras完成签到 ,获得积分10
49秒前
50秒前
心灵美语兰完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
猫猫豆包完成签到,获得积分10
1分钟前
Orange应助儒雅的冥王星采纳,获得100
2分钟前
2分钟前
笑傲完成签到,获得积分10
2分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
henrychen完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
7分钟前
隐形曼青应助科研小贩采纳,获得10
7分钟前
ranj完成签到,获得积分10
7分钟前
上官若男应助金水相生采纳,获得10
7分钟前
7分钟前
调皮千兰发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899