亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study

鼻咽癌 医学 放射治疗 磁共振成像 肿瘤科 内科学 放射科
作者
Ting Liu,Di Dong,Xun Zhao,Xiaomin Ou,Junlin Yi,Jian Guan,Ye Zhang,Xiao‐Fei Lv,Chuanmiao Xie,Dong–Hua Luo,Rui Sun,Qiuyan Chen,Xing Lv,Shan-Shan Guo,Li‐Ting Liu,Da-Feng Lin,Yan-Zhou Chen,Jie‐Yi Lin,Mei-Juan Luo,Wenbin Yan,Meilin He,Mengyuan Mao,Manyi Zhu,Wenhui Chen,Bowen Shen,Shi-Qian Wang,Hailin Li,Lianzhen Zhong,Chaosu Hu,Dehua Wu,Hai‐Qiang Mai,Jie Tian,Lin‐Quan Tang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12916-023-03164-3
摘要

Abstract Background Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. Methods This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. Results The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713–0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2–62.5% vs. 16.3–18.8%, P < 0.001). The signature significantly outperformed the clinical model ( P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07–6.75, P < 0.001) and all causes of deaths (HR 1.53–2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. Conclusions We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白家瑜发布了新的文献求助10
3秒前
8秒前
10秒前
土又鸟发布了新的文献求助10
11秒前
归尘应助harry采纳,获得10
11秒前
xuanjiawu完成签到 ,获得积分10
13秒前
小蘑菇应助土又鸟采纳,获得10
27秒前
style完成签到,获得积分10
27秒前
SciGPT应助felix采纳,获得10
39秒前
41秒前
NEKO发布了新的文献求助10
46秒前
白家瑜完成签到 ,获得积分20
47秒前
陆lyy发布了新的文献求助10
50秒前
sn完成签到 ,获得积分10
1分钟前
陆lyy完成签到,获得积分20
1分钟前
kong完成签到 ,获得积分10
1分钟前
1分钟前
土又鸟完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
土又鸟发布了新的文献求助10
1分钟前
nini完成签到,获得积分10
1分钟前
1分钟前
1分钟前
吧唧吧唧发布了新的文献求助10
1分钟前
allover完成签到,获得积分10
1分钟前
星辰大海应助吧唧吧唧采纳,获得10
1分钟前
2分钟前
烈阳发布了新的文献求助10
2分钟前
小二郎应助TwinQ采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
津津发布了新的文献求助10
2分钟前
2分钟前
2分钟前
NEKO发布了新的文献求助10
2分钟前
TwinQ发布了新的文献求助10
2分钟前
aurora完成签到,获得积分10
2分钟前
津津完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603266
求助须知:如何正确求助?哪些是违规求助? 4688354
关于积分的说明 14853288
捐赠科研通 4688706
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543