Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study

鼻咽癌 医学 放射治疗 磁共振成像 肿瘤科 内科学 放射科
作者
Ting Liu,Di Dong,Xun Zhao,Xiaomin Ou,Junlin Yi,Jian Guan,Ye Zhang,Xiao‐Fei Lv,Chuanmiao Xie,Dong–Hua Luo,Rui Sun,Qiuyan Chen,Xing Lv,Shan-Shan Guo,Li‐Ting Liu,Da-Feng Lin,Yan-Zhou Chen,Jie‐Yi Lin,Mei-Juan Luo,Wenbin Yan,Meilin He,Mengyuan Mao,Manyi Zhu,Wenhui Chen,Bowen Shen,Shi-Qian Wang,Hailin Li,Lianzhen Zhong,Chaosu Hu,Dehua Wu,Hai‐Qiang Mai,Jie Tian,Lin‐Quan Tang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12916-023-03164-3
摘要

Abstract Background Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. Methods This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. Results The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713–0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2–62.5% vs. 16.3–18.8%, P < 0.001). The signature significantly outperformed the clinical model ( P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07–6.75, P < 0.001) and all causes of deaths (HR 1.53–2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. Conclusions We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助10
刚刚
1秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
科研通AI6应助李_Steven采纳,获得10
2秒前
饭团的老父亲应助李_Steven采纳,获得10
2秒前
饭团的老父亲应助李_Steven采纳,获得10
2秒前
饭团的老父亲应助李_Steven采纳,获得10
2秒前
Shawn完成签到,获得积分10
2秒前
饭团的老父亲应助李_Steven采纳,获得10
2秒前
2秒前
大模型应助周美言采纳,获得10
3秒前
王超发布了新的文献求助10
3秒前
4秒前
agony完成签到 ,获得积分10
4秒前
天天破大防完成签到,获得积分10
4秒前
宫宛儿发布了新的文献求助10
5秒前
0514gr完成签到,获得积分10
5秒前
斯文败类应助圥忈采纳,获得10
5秒前
完美世界应助龙凌音采纳,获得10
7秒前
chc发布了新的文献求助10
7秒前
7秒前
李爱国应助BioGO采纳,获得10
8秒前
含蓄的小熊猫完成签到 ,获得积分10
8秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得30
9秒前
GAPING发布了新的文献求助10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
科研通AI6应助李_Steven采纳,获得10
9秒前
9秒前
酷波er应助激昂的蜻蜓采纳,获得10
10秒前
顾矜应助王超采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596