Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study

鼻咽癌 医学 放射治疗 磁共振成像 肿瘤科 内科学 放射科
作者
Ting Liu,Di Dong,Xun Zhao,Xiaomin Ou,Junlin Yi,Jian Guan,Ye Zhang,Xiao‐Fei Lv,Chuanmiao Xie,Dong–Hua Luo,Rui Sun,Qiuyan Chen,Xing Lv,Shan-Shan Guo,Li‐Ting Liu,Da-Feng Lin,Yan-Zhou Chen,Jie‐Yi Lin,Mei-Juan Luo,Wenbin Yan,Meilin He,Mengyuan Mao,Manyi Zhu,Wenhui Chen,Bowen Shen,Shi-Qian Wang,Hailin Li,Lianzhen Zhong,Chaosu Hu,Dehua Wu,Hai‐Qiang Mai,Jie Tian,Lin‐Quan Tang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12916-023-03164-3
摘要

Abstract Background Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. Methods This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. Results The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713–0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2–62.5% vs. 16.3–18.8%, P < 0.001). The signature significantly outperformed the clinical model ( P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07–6.75, P < 0.001) and all causes of deaths (HR 1.53–2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. Conclusions We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俐鹤轩发布了新的文献求助10
1秒前
李健的小迷弟应助CUGjy采纳,获得10
1秒前
2秒前
呼初南发布了新的文献求助10
4秒前
康佳璐发布了新的文献求助10
5秒前
5秒前
小郑顺利毕业完成签到,获得积分10
6秒前
韩明轩完成签到 ,获得积分10
6秒前
JamesPei应助呼初南采纳,获得10
9秒前
xiaowanzi完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
11秒前
康佳璐完成签到,获得积分10
12秒前
英姑应助1112采纳,获得10
12秒前
Knowledge发布了新的文献求助10
12秒前
13秒前
Lucas应助魔幻的寒云采纳,获得20
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
拉长的南松完成签到 ,获得积分10
15秒前
sun发布了新的文献求助10
17秒前
17秒前
科研通AI6应助李珅玥采纳,获得30
17秒前
香蕉觅云应助药膳干采纳,获得10
19秒前
南昌小霸王关注了科研通微信公众号
20秒前
wanzhao发布了新的文献求助10
20秒前
LL完成签到 ,获得积分10
23秒前
23秒前
王志杰发布了新的文献求助10
24秒前
24秒前
圆圆圆完成签到,获得积分10
26秒前
老实的从菡完成签到,获得积分10
26秒前
尔尔完成签到,获得积分20
27秒前
27秒前
ncycg发布了新的文献求助10
29秒前
wanzhao完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039