Radiomic signatures reveal multiscale intratumor heterogeneity associated with tissue tolerance and survival in re-irradiated nasopharyngeal carcinoma: a multicenter study

鼻咽癌 医学 放射治疗 磁共振成像 肿瘤科 内科学 放射科
作者
Ting Liu,Di Dong,Xun Zhao,Xiaomin Ou,Junlin Yi,Jian Guan,Ye Zhang,Xiao‐Fei Lv,Chuanmiao Xie,Dong–Hua Luo,Rui Sun,Qiuyan Chen,Xing Lv,Shan-Shan Guo,Li‐Ting Liu,Da-Feng Lin,Yan-Zhou Chen,Jie‐Yi Lin,Mei-Juan Luo,Wenbin Yan,Meilin He,Mengyuan Mao,Manyi Zhu,Wenhui Chen,Bowen Shen,Shi-Qian Wang,Hailin Li,Lianzhen Zhong,Chaosu Hu,Dehua Wu,Hai‐Qiang Mai,Jie Tian,Lin‐Quan Tang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:21 (1) 被引量:9
标识
DOI:10.1186/s12916-023-03164-3
摘要

Abstract Background Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. Methods This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. Results The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713–0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2–62.5% vs. 16.3–18.8%, P < 0.001). The signature significantly outperformed the clinical model ( P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07–6.75, P < 0.001) and all causes of deaths (HR 1.53–2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. Conclusions We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
兰兰不懒发布了新的文献求助10
1秒前
Hello应助佐zzz采纳,获得10
1秒前
2秒前
老实的斌完成签到 ,获得积分10
3秒前
2425完成签到,获得积分10
4秒前
田様应助专一的戒指采纳,获得10
5秒前
fengwanru发布了新的文献求助10
5秒前
维尼熊完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
铅笔刀完成签到,获得积分10
10秒前
淡淡萍完成签到,获得积分10
10秒前
yilia完成签到,获得积分10
11秒前
丘比特应助guo采纳,获得30
12秒前
JW完成签到,获得积分10
14秒前
huihui完成签到,获得积分10
16秒前
快乐的寄容完成签到 ,获得积分10
19秒前
21秒前
21秒前
真君山山长完成签到,获得积分10
23秒前
MYunn完成签到,获得积分10
24秒前
lokiyyy发布了新的文献求助10
25秒前
25秒前
27秒前
深情安青应助彭瞻采纳,获得10
27秒前
xiaomi发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
彭于晏应助找文献呢采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
长度2到完成签到,获得积分10
33秒前
34秒前
桐桐应助lokiyyy采纳,获得10
36秒前
传奇3应助twotwomi采纳,获得10
36秒前
boging完成签到 ,获得积分10
37秒前
mumumu发布了新的文献求助30
38秒前
1234567完成签到,获得积分20
38秒前
lic关闭了lic文献求助
38秒前
38秒前
SciGPT应助生动从丹采纳,获得10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700