InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images

水准点(测量) 计算机科学 公制(单位) 资产(计算机安全) 人工智能 直线(几何图形) 异常检测 透视失真 透视图(图形) 资产管理 目标检测 失真(音乐) 计算机视觉 图像(数学) 模式识别(心理学) 计算机安全 工程类 财务 数学 经济 计算机网络 放大器 运营管理 地理 大地测量学 带宽(计算) 几何学
作者
André Luiz Buarque Vieira-e-Silva,Heitor de Castro Felix,Franscisco Paulo Magalhães Simões,Verônica Teichrieb,Michel dos Santos,Hemir da Cunha Santiago,Virginia Sgotti,Henrique Lott Neto
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (23): 7294-7320 被引量:5
标识
DOI:10.1080/01431161.2023.2283900
摘要

Power line maintenance and inspection are essential to avoid power supply interruptions, reducing its high social and financial impacts yearly. Automating power line visual inspections remains a relevant open problem for the industry due to the lack of public real-world datasets of power line components and their various defects to foster new research. This paper introduces InsPLAD, a Power Line Asset Inspection Dataset and Benchmark containing 10,607 high-resolution Unmanned Aerial Vehicles colour images. The dataset contains 17 unique power line assets captured from real-world operating power lines. Additionally, five of those assets present six defects: four of which are corrosion, one is a broken component, and one is a bird's nest presence. All assets were labelled according to their condition, whether normal or the defect name found on an image level. We thoroughly evaluate state-of-the-art and popular methods for three image-level computer vision tasks covered by InsPLAD: object detection, through the AP metric; defect classification, through Balanced Accuracy; and anomaly detection, through the AUROC metric. InsPLAD offers various vision challenges from uncontrolled environments, such as multi-scale objects, multi-size class instances, multiple objects per image, intra-class variation, cluttered background, distinct point-of-views, perspective distortion, occlusion, and varied lighting conditions. To the best of our knowledge, InsPLAD is the first large real-world dataset and benchmark for power line asset inspection with multiple components and defects for various computer vision tasks, with a potential impact to improve state-of-the-art methods in the field. It will be publicly available in its integrity on a repository with a thorough description. It can be found at https://github.com/andreluizbvs/InsPLAD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
6666发布了新的文献求助10
1秒前
YingQin完成签到,获得积分20
1秒前
Mia完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
2秒前
stt发布了新的文献求助10
2秒前
馒头发布了新的文献求助10
3秒前
王哥完成签到,获得积分10
3秒前
3秒前
黑马王子发布了新的文献求助30
3秒前
4秒前
开口笑发布了新的文献求助10
5秒前
zz发布了新的文献求助10
6秒前
爆米花应助xy7采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
strive完成签到,获得积分10
8秒前
xxguge完成签到 ,获得积分10
8秒前
Zero发布了新的文献求助10
9秒前
9秒前
1751587229完成签到,获得积分10
9秒前
美满的珠完成签到 ,获得积分10
10秒前
科研通AI6应助HU采纳,获得10
10秒前
xcxElf发布了新的文献求助10
10秒前
丘比特应助小飞鼠采纳,获得10
10秒前
科研通AI2S应助我要发sci采纳,获得10
10秒前
歪比八不发布了新的文献求助10
11秒前
行走的柳叶刀完成签到,获得积分10
13秒前
14秒前
科研通AI6应助onecloudhere采纳,获得10
14秒前
6666完成签到,获得积分10
15秒前
xcxElf完成签到,获得积分10
16秒前
科研通AI6应助黑马王子采纳,获得10
17秒前
完美世界应助歪比八不采纳,获得10
17秒前
JOKY完成签到 ,获得积分10
18秒前
科研通AI6应助小雒雒采纳,获得10
18秒前
随心完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244