InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images

水准点(测量) 计算机科学 公制(单位) 资产(计算机安全) 人工智能 直线(几何图形) 异常检测 透视失真 透视图(图形) 资产管理 目标检测 失真(音乐) 计算机视觉 图像(数学) 模式识别(心理学) 计算机安全 工程类 财务 放大器 计算机网络 运营管理 几何学 数学 大地测量学 带宽(计算) 经济 地理
作者
André Luiz Buarque Vieira-e-Silva,Heitor de Castro Felix,Franscisco Paulo Magalhães Simões,Verônica Teichrieb,Michel dos Santos,Hemir da Cunha Santiago,Virginia Sgotti,Henrique Lott Neto
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (23): 7294-7320 被引量:5
标识
DOI:10.1080/01431161.2023.2283900
摘要

Power line maintenance and inspection are essential to avoid power supply interruptions, reducing its high social and financial impacts yearly. Automating power line visual inspections remains a relevant open problem for the industry due to the lack of public real-world datasets of power line components and their various defects to foster new research. This paper introduces InsPLAD, a Power Line Asset Inspection Dataset and Benchmark containing 10,607 high-resolution Unmanned Aerial Vehicles colour images. The dataset contains 17 unique power line assets captured from real-world operating power lines. Additionally, five of those assets present six defects: four of which are corrosion, one is a broken component, and one is a bird's nest presence. All assets were labelled according to their condition, whether normal or the defect name found on an image level. We thoroughly evaluate state-of-the-art and popular methods for three image-level computer vision tasks covered by InsPLAD: object detection, through the AP metric; defect classification, through Balanced Accuracy; and anomaly detection, through the AUROC metric. InsPLAD offers various vision challenges from uncontrolled environments, such as multi-scale objects, multi-size class instances, multiple objects per image, intra-class variation, cluttered background, distinct point-of-views, perspective distortion, occlusion, and varied lighting conditions. To the best of our knowledge, InsPLAD is the first large real-world dataset and benchmark for power line asset inspection with multiple components and defects for various computer vision tasks, with a potential impact to improve state-of-the-art methods in the field. It will be publicly available in its integrity on a repository with a thorough description. It can be found at https://github.com/andreluizbvs/InsPLAD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助敏感草丛采纳,获得10
刚刚
领导范儿应助橙色采纳,获得10
2秒前
Billy应助大爱仙尊采纳,获得40
2秒前
2秒前
仙棠完成签到,获得积分10
3秒前
科研通AI5应助潇湘夜雨采纳,获得20
3秒前
俏皮的芝麻完成签到,获得积分10
4秒前
4秒前
5秒前
迷失的悠悠完成签到,获得积分10
5秒前
5秒前
英姑应助葡萄成熟采纳,获得10
5秒前
聪明摩托完成签到,获得积分10
6秒前
7秒前
古往今来应助缥缈的采蓝采纳,获得20
7秒前
8秒前
情怀应助sunny33采纳,获得10
8秒前
敏感草丛完成签到,获得积分10
9秒前
ccccccc发布了新的文献求助30
9秒前
池池完成签到,获得积分20
9秒前
killCooker完成签到,获得积分10
11秒前
11秒前
SYLH应助科研通管家采纳,获得10
12秒前
djiwisksk66应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
敏感草丛发布了新的文献求助10
13秒前
14秒前
奋斗刚发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202