InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images

水准点(测量) 计算机科学 公制(单位) 资产(计算机安全) 人工智能 直线(几何图形) 异常检测 透视失真 透视图(图形) 资产管理 目标检测 失真(音乐) 计算机视觉 图像(数学) 模式识别(心理学) 计算机安全 工程类 财务 放大器 计算机网络 运营管理 几何学 数学 大地测量学 带宽(计算) 经济 地理
作者
André Luiz Buarque Vieira-e-Silva,Heitor de Castro Felix,Franscisco Paulo Magalhães Simões,Verônica Teichrieb,Michel dos Santos,Hemir da Cunha Santiago,Virginia Sgotti,Henrique Lott Neto
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (23): 7294-7320 被引量:5
标识
DOI:10.1080/01431161.2023.2283900
摘要

Power line maintenance and inspection are essential to avoid power supply interruptions, reducing its high social and financial impacts yearly. Automating power line visual inspections remains a relevant open problem for the industry due to the lack of public real-world datasets of power line components and their various defects to foster new research. This paper introduces InsPLAD, a Power Line Asset Inspection Dataset and Benchmark containing 10,607 high-resolution Unmanned Aerial Vehicles colour images. The dataset contains 17 unique power line assets captured from real-world operating power lines. Additionally, five of those assets present six defects: four of which are corrosion, one is a broken component, and one is a bird's nest presence. All assets were labelled according to their condition, whether normal or the defect name found on an image level. We thoroughly evaluate state-of-the-art and popular methods for three image-level computer vision tasks covered by InsPLAD: object detection, through the AP metric; defect classification, through Balanced Accuracy; and anomaly detection, through the AUROC metric. InsPLAD offers various vision challenges from uncontrolled environments, such as multi-scale objects, multi-size class instances, multiple objects per image, intra-class variation, cluttered background, distinct point-of-views, perspective distortion, occlusion, and varied lighting conditions. To the best of our knowledge, InsPLAD is the first large real-world dataset and benchmark for power line asset inspection with multiple components and defects for various computer vision tasks, with a potential impact to improve state-of-the-art methods in the field. It will be publicly available in its integrity on a repository with a thorough description. It can be found at https://github.com/andreluizbvs/InsPLAD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宋博发布了新的文献求助10
1秒前
tamer完成签到,获得积分10
2秒前
缥缈的洪纲完成签到,获得积分10
3秒前
情怀应助张龙雨采纳,获得10
3秒前
3秒前
6秒前
7秒前
7秒前
ggg发布了新的文献求助10
9秒前
科研通AI2S应助ws采纳,获得30
10秒前
乐小泽发布了新的文献求助10
10秒前
唐唐发布了新的文献求助10
12秒前
16秒前
SciGPT应助葉落葉飄采纳,获得10
16秒前
无限大树发布了新的文献求助10
17秒前
酷波er应助ggg采纳,获得10
17秒前
Tony完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
柠檬汽水发布了新的文献求助10
22秒前
淡淡的水香应助清水采纳,获得30
24秒前
善学以致用应助zhaokkkk采纳,获得10
24秒前
24秒前
大胆蛋挞发布了新的文献求助10
25秒前
25秒前
ENHNG发布了新的文献求助10
25秒前
26秒前
zzzz完成签到,获得积分20
28秒前
29秒前
chemhub完成签到,获得积分10
29秒前
30秒前
31秒前
iNk应助小松徐采纳,获得20
32秒前
xxxwax完成签到,获得积分10
32秒前
33秒前
调研昵称发布了新的文献求助10
35秒前
深情安青应助Lily采纳,获得10
35秒前
zhaokkkk发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129