InsPLAD: A Dataset and Benchmark for Power Line Asset Inspection in UAV Images

水准点(测量) 计算机科学 公制(单位) 资产(计算机安全) 人工智能 直线(几何图形) 异常检测 透视失真 透视图(图形) 资产管理 目标检测 失真(音乐) 计算机视觉 图像(数学) 模式识别(心理学) 计算机安全 工程类 财务 数学 经济 计算机网络 放大器 运营管理 地理 大地测量学 带宽(计算) 几何学
作者
André Luiz Buarque Vieira-e-Silva,Heitor de Castro Felix,Franscisco Paulo Magalhães Simões,Verônica Teichrieb,Michel dos Santos,Hemir da Cunha Santiago,Virginia Sgotti,Henrique Lott Neto
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (23): 7294-7320 被引量:5
标识
DOI:10.1080/01431161.2023.2283900
摘要

Power line maintenance and inspection are essential to avoid power supply interruptions, reducing its high social and financial impacts yearly. Automating power line visual inspections remains a relevant open problem for the industry due to the lack of public real-world datasets of power line components and their various defects to foster new research. This paper introduces InsPLAD, a Power Line Asset Inspection Dataset and Benchmark containing 10,607 high-resolution Unmanned Aerial Vehicles colour images. The dataset contains 17 unique power line assets captured from real-world operating power lines. Additionally, five of those assets present six defects: four of which are corrosion, one is a broken component, and one is a bird's nest presence. All assets were labelled according to their condition, whether normal or the defect name found on an image level. We thoroughly evaluate state-of-the-art and popular methods for three image-level computer vision tasks covered by InsPLAD: object detection, through the AP metric; defect classification, through Balanced Accuracy; and anomaly detection, through the AUROC metric. InsPLAD offers various vision challenges from uncontrolled environments, such as multi-scale objects, multi-size class instances, multiple objects per image, intra-class variation, cluttered background, distinct point-of-views, perspective distortion, occlusion, and varied lighting conditions. To the best of our knowledge, InsPLAD is the first large real-world dataset and benchmark for power line asset inspection with multiple components and defects for various computer vision tasks, with a potential impact to improve state-of-the-art methods in the field. It will be publicly available in its integrity on a repository with a thorough description. It can be found at https://github.com/andreluizbvs/InsPLAD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等有力气完成签到,获得积分10
1秒前
1秒前
Orange应助蒋一采纳,获得10
2秒前
2秒前
2秒前
大方芾完成签到,获得积分10
3秒前
3秒前
科研通AI6应助Shahid采纳,获得10
3秒前
4秒前
5秒前
Gaberil发布了新的文献求助10
5秒前
5秒前
5秒前
阿晴完成签到,获得积分10
6秒前
ecrrry完成签到 ,获得积分10
6秒前
7秒前
美好幻灵发布了新的文献求助10
7秒前
7秒前
7秒前
碧松桥完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
呆毛王发布了新的文献求助10
8秒前
仰望星空应助xiaoxiao1992采纳,获得10
8秒前
一群牛发布了新的文献求助10
9秒前
XRWei发布了新的文献求助10
9秒前
科研通AI6应助Wangxuexin采纳,获得10
9秒前
阿晴发布了新的文献求助10
9秒前
10秒前
花花发布了新的文献求助30
10秒前
Lucas应助qianqina采纳,获得10
11秒前
12秒前
顾矜应助博思好行采纳,获得10
12秒前
12秒前
上官若男应助迷你的依凝采纳,获得10
12秒前
12秒前
12秒前
Faye完成签到 ,获得积分10
13秒前
zhaoshuo发布了新的文献求助10
13秒前
慕青应助一年5篇采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403