已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e511-e523 被引量:3
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
赘婿应助静汉采纳,获得10
2秒前
十月木樨发布了新的文献求助10
3秒前
3秒前
4秒前
打打应助小小科研牛马采纳,获得10
6秒前
微笑咖啡豆完成签到 ,获得积分20
13秒前
缓慢采柳完成签到 ,获得积分10
13秒前
TGU的小马同学完成签到 ,获得积分10
13秒前
15秒前
爱航哥多久了完成签到 ,获得积分10
15秒前
Sea_moon完成签到,获得积分10
19秒前
香蕉觅云应助iamxx_采纳,获得10
20秒前
21秒前
852应助Lx2huo采纳,获得10
26秒前
米可熊完成签到,获得积分20
26秒前
迅捷海狸发布了新的文献求助10
26秒前
Sam完成签到,获得积分10
28秒前
顾矜应助伯克利芙蓉王采纳,获得30
28秒前
珏珏_不是玉玉完成签到 ,获得积分10
29秒前
30秒前
研友_VZG7GZ应助天真的大船采纳,获得10
30秒前
31秒前
研友_ngX12Z完成签到 ,获得积分10
32秒前
win完成签到 ,获得积分10
33秒前
乐乐应助wangli采纳,获得10
34秒前
开心惜梦完成签到,获得积分10
35秒前
害怕的代亦完成签到 ,获得积分10
38秒前
39秒前
40秒前
完美世界应助害怕的板凳采纳,获得10
40秒前
GGGrigor完成签到,获得积分10
41秒前
空白格完成签到 ,获得积分10
42秒前
45秒前
DI完成签到 ,获得积分10
45秒前
46秒前
50秒前
50秒前
健忘无颜发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361