Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (4): e511-e523 被引量:1
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yznfly应助monoklatt采纳,获得20
1秒前
克偃统统完成签到,获得积分10
1秒前
执着的灯泡完成签到,获得积分10
2秒前
某某完成签到,获得积分10
2秒前
xuxu发布了新的文献求助20
2秒前
羽墨完成签到,获得积分10
2秒前
2秒前
楚江南完成签到,获得积分10
2秒前
QIU发布了新的文献求助10
2秒前
3秒前
学医的小蜗牛完成签到,获得积分10
3秒前
4秒前
4秒前
宋祝福完成签到 ,获得积分10
5秒前
Jason发布了新的文献求助10
5秒前
有思想完成签到,获得积分10
6秒前
Akim应助satchzhao采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
coolkid应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
光影相生应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
美好的尔白完成签到,获得积分10
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
coolkid应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960314
求助须知:如何正确求助?哪些是违规求助? 3506417
关于积分的说明 11130144
捐赠科研通 3238582
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871941
科研通“疑难数据库(出版商)”最低求助积分说明 803099