Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e511-e523 被引量:3
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮子卷卷完成签到,获得积分0
2秒前
3秒前
丘比特应助innocent采纳,获得10
3秒前
爱始终年轻完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
口香糖探长完成签到 ,获得积分10
3秒前
墨染完成签到 ,获得积分10
5秒前
还行啊完成签到,获得积分10
5秒前
诚心茈完成签到,获得积分10
5秒前
阿萨拉黄毛完成签到,获得积分10
6秒前
tjcu完成签到,获得积分10
6秒前
max发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
lzl完成签到,获得积分10
12秒前
端庄梦桃发布了新的文献求助10
12秒前
12秒前
wanci应助xyq采纳,获得10
13秒前
精明的听寒完成签到 ,获得积分10
14秒前
CBWKEYANTONG123完成签到,获得积分10
16秒前
innocent发布了新的文献求助10
17秒前
17秒前
H2SO4完成签到,获得积分10
20秒前
20秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
zhang完成签到,获得积分20
26秒前
HL完成签到,获得积分10
26秒前
27秒前
max发布了新的文献求助10
27秒前
28秒前
30秒前
杨树完成签到 ,获得积分10
31秒前
专注月亮发布了新的文献求助10
31秒前
xxx11完成签到,获得积分10
32秒前
33秒前
BTim发布了新的文献求助10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425194
求助须知:如何正确求助?哪些是违规求助? 4539312
关于积分的说明 14166764
捐赠科研通 4456502
什么是DOI,文献DOI怎么找? 2444225
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568