Multiparameter spectral CT-based radiomics in predicting the expression of or programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier]
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dudao发布了新的文献求助10
1秒前
2秒前
hapi完成签到,获得积分10
3秒前
lyy完成签到 ,获得积分10
5秒前
5秒前
小广发布了新的文献求助10
5秒前
金22完成签到,获得积分10
5秒前
健康的沂完成签到,获得积分10
6秒前
Zhidong Wei发布了新的文献求助10
6秒前
7秒前
10秒前
Singularity应助范先生采纳,获得20
10秒前
11秒前
雪球完成签到,获得积分10
12秒前
可爱的函函应助dan采纳,获得10
12秒前
13秒前
13秒前
cgshao完成签到,获得积分10
13秒前
SMG发布了新的文献求助10
14秒前
丁丁完成签到 ,获得积分10
16秒前
Y不吃香菜完成签到,获得积分10
16秒前
18秒前
777完成签到,获得积分10
18秒前
Y不吃香菜发布了新的文献求助10
20秒前
heihei完成签到,获得积分20
20秒前
20秒前
21秒前
香蕉觅云应助安静元槐采纳,获得10
25秒前
Ava应助个性的饼干采纳,获得10
25秒前
25秒前
26秒前
charlotte发布了新的文献求助10
26秒前
26秒前
26秒前
爱学习的小羊完成签到,获得积分10
26秒前
风中浩天完成签到,获得积分10
27秒前
WXT完成签到,获得积分10
27秒前
dan完成签到,获得积分20
27秒前
ttt发布了新的文献求助10
30秒前
huangyao发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352