Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e511-e523 被引量:3
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
疯少完成签到,获得积分10
2秒前
科妍通AI2_1应助左丘映易采纳,获得10
2秒前
啊哈完成签到,获得积分10
3秒前
4秒前
Jasper应助毛绒绒窝铺采纳,获得10
4秒前
Asteroid完成签到,获得积分10
4秒前
无奈萝发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
常芹完成签到,获得积分10
8秒前
木子杨发布了新的文献求助10
9秒前
ZengZeng_完成签到,获得积分10
10秒前
11秒前
科研通AI6.1应助明亮谷波采纳,获得10
11秒前
芋泥泥泥发布了新的文献求助10
12秒前
宝玉发布了新的文献求助10
12秒前
pansy发布了新的文献求助10
12秒前
海猫食堂发布了新的文献求助10
13秒前
15秒前
15秒前
com发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
哈哈发布了新的文献求助10
17秒前
烟花应助骤雨红尘采纳,获得10
17秒前
19秒前
科研通AI6.1应助小鱼采纳,获得10
19秒前
光亮语梦完成签到 ,获得积分10
19秒前
20秒前
21秒前
小蘑菇应助liu采纳,获得10
21秒前
21秒前
芋泥泥泥完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462