亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer

医学 无线电技术 接收机工作特性 肺癌 逻辑回归 支持向量机 白细胞 核医学 癌症 放射科 回顾性队列研究 人工智能 肿瘤科 内科学 计算机科学
作者
Xiaoqing Zheng,Y. Ma,Yue Cui,Shishang Dong,F.X. Chang,Ding Zhu,Gang Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (4): e511-e523 被引量:3
标识
DOI:10.1016/j.crad.2024.01.006
摘要

Aim To explore the value of radiomics for predicting the expression of or programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. Materials And Methods A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. Results The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. Conclusion The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助苹果绿采纳,获得10
5秒前
丰富的绮波完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
9秒前
18秒前
苹果绿完成签到,获得积分20
21秒前
2633148059发布了新的文献求助10
23秒前
一生完成签到,获得积分10
25秒前
万能图书馆应助和光同尘采纳,获得10
28秒前
化学把我害惨了完成签到,获得积分10
41秒前
xsy完成签到 ,获得积分10
46秒前
英姑应助wenky采纳,获得10
48秒前
1分钟前
1分钟前
啊z应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
雨寒完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助阿司匹林采纳,获得30
2分钟前
妮娜发布了新的文献求助10
2分钟前
单纯的雪巧完成签到,获得积分10
2分钟前
宋宋不迷糊完成签到 ,获得积分10
2分钟前
阿司匹林完成签到 ,获得积分10
2分钟前
2分钟前
阿司匹林发布了新的文献求助30
2分钟前
单纯的雪巧关注了科研通微信公众号
2分钟前
larsy完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
larsy发布了新的文献求助10
3分钟前
3分钟前
CJH104完成签到 ,获得积分10
3分钟前
ZanE完成签到,获得积分10
3分钟前
一粟的粉r完成签到 ,获得积分10
3分钟前
华仔应助千千方方123采纳,获得10
4分钟前
4分钟前
alex发布了新的文献求助10
4分钟前
alex完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681520
求助须知:如何正确求助?哪些是违规求助? 5008964
关于积分的说明 15175712
捐赠科研通 4841035
什么是DOI,文献DOI怎么找? 2594826
邀请新用户注册赠送积分活动 1547832
关于科研通互助平台的介绍 1505846