表土
土壤肥力
土壤碳
农学
土壤质量
环境科学
作物产量
土壤水分
土壤科学
生物
作者
Fangfang Zhang,Qilong Song,Tao Ma,Na Gao,Xiaohu Han,You-Gen Shen,Shanchao Yue,Shiqing Li
标识
DOI:10.1016/j.jenvman.2023.119687
摘要
Ridge–furrow with full film mulching has been widely applied to increase crop yield and water productivity on the Loess Plateau, but it may stimulate carbon (C) mineralization. How to integrate other technological benefits based on this technology for long-term maintenance of high yield and soil fertility is a pressing issue. With the local farmers’ practice (FP) as a control, three integrated soil-crop system management (ISSM) practices integrating fertilizer rates, fertilizer types and planting densities (ISSM-N1, ISSM-N2 and ISSM-MN) were established to improve maize yield and soil quality. Compared with the FP, the maize yield increased by 13.34%, 21.83% and 30.24%, and the soil quality index (SQI) increased by 9.66%, 14.91% and 38.38% for ISSM-N1, ISSM-N2 and ISSM-MN, respectively. However, ISSM-N1 did not significantly increase yield, and ISSM-N2 increased residual soil nitrate and decreased nitrogen (N) partial factor productivity significantly. Compared to the FP, ISSM practices increased soil organic carbon (SOC), labile organic C fractions (LOCFs) and potassium permanganate organic C fractions in the topsoil to varying degrees, but only ISSM-MN reached significant levels for most C fractions. The sensitivity index indicated very easily oxidizable C (24.6%), easily oxidizable C (24.7%), hot-water extractable C (30.8%), labile organic C (24.7%) and particulate organic C (57.3%) were more sensitive than SOC (22.7%). ISSM-MN sequestered significantly higher C than the other treatments. The results of the relative importance analysis and the structural equation model indicated that LOCFs were the direct contributors to yield, while recalcitrant C (CO) was the indirect contributor, revealing the underlying mechanism that CO decomposed to replenish LOCFs and the total N pool with the water soluble C pool as the transit station. Overall, ISSM-MN is the most promising strategy to improve crop yield and soil fertility in the long term on the Loess Plateau.
科研通智能强力驱动
Strongly Powered by AbleSci AI