Optimal pricing for dual-channel retailing with stochastic attraction demand model

利润(经济学) 对偶(语法数字) 频道(广播) 背景(考古学) 微观经济学 计算机科学 需求曲线 供应链 业务 经济 产业组织 营销 电信 古生物学 艺术 文学类 生物
作者
Minh Tam Tran,Yacine Rekik,Khaled Hadj-Hamou
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:268: 109127-109127 被引量:5
标识
DOI:10.1016/j.ijpe.2023.109127
摘要

In dual-channel supply chains, where retailers sell their goods both online and in physical stores, determining the optimal pricing strategy while considering customer behavior is a critical challenge. This study introduces and investigates a dual-channel pricing model that accounts for customer channel choice behavior. Drawing inspiration from market-share models, we incorporate a demand model that reflects the attraction between online and physical stores. Our approach includes stochastic assumptions for potential market demand and price-based interactions between the two channels. In particular, we model the channel’s stochastic demand as a non-linear function of prices and we allow for different customer reactions when the physical store runs out of stock. This paper makes two key contributions. First, we highlight the analytical complexity involved in verifying the joint concavity of the retailer’s expected profit function with respect to selling prices. To address this challenge, we introduce a novel approach to establish the existence of optimal global prices in the context of non-linear demand and a non-linear, non-concave objective function. Secondly, our study offers practical insights by applying the model to various operational scenarios. We provide guidance on the best pricing strategy when physical store capacity is limited. Depending on customer channel preferences, prioritizing the showroom may lead to higher profits. However, optimizing for profit could result in a reduced market share. In a showroom configuration, the retailer’s choice may shift between exclusive physical and exclusive online retailing to maximize profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪贝贝完成签到,获得积分10
2秒前
xiaoyang1986完成签到,获得积分10
7秒前
7秒前
7秒前
浮浮世世完成签到,获得积分10
9秒前
布丁大王关注了科研通微信公众号
10秒前
天天快乐应助niuniuff66采纳,获得10
12秒前
12秒前
13秒前
Richardisme完成签到 ,获得积分10
14秒前
叶言发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
研友_VZG7GZ应助yuko采纳,获得10
16秒前
18秒前
19秒前
niuniuff66完成签到,获得积分20
19秒前
邓紫依发布了新的文献求助10
20秒前
宣孤菱发布了新的文献求助10
20秒前
20秒前
20秒前
老夫子发布了新的文献求助10
21秒前
21秒前
22秒前
布丁大王发布了新的文献求助10
23秒前
Ava应助MS903采纳,获得10
24秒前
niuniuff66发布了新的文献求助10
24秒前
周呀发布了新的文献求助200
25秒前
叶言完成签到,获得积分10
25秒前
Aoka发布了新的文献求助10
26秒前
天天快乐应助科研通管家采纳,获得30
29秒前
dypdyp应助ei123采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396