Optimal pricing for dual-channel retailing with stochastic attraction demand model

利润(经济学) 对偶(语法数字) 频道(广播) 背景(考古学) 微观经济学 计算机科学 需求曲线 供应链 业务 经济 产业组织 营销 电信 古生物学 艺术 文学类 生物
作者
Minh Tam Tran,Yacine Rekik,Khaled Hadj-Hamou
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:268: 109127-109127 被引量:5
标识
DOI:10.1016/j.ijpe.2023.109127
摘要

In dual-channel supply chains, where retailers sell their goods both online and in physical stores, determining the optimal pricing strategy while considering customer behavior is a critical challenge. This study introduces and investigates a dual-channel pricing model that accounts for customer channel choice behavior. Drawing inspiration from market-share models, we incorporate a demand model that reflects the attraction between online and physical stores. Our approach includes stochastic assumptions for potential market demand and price-based interactions between the two channels. In particular, we model the channel’s stochastic demand as a non-linear function of prices and we allow for different customer reactions when the physical store runs out of stock. This paper makes two key contributions. First, we highlight the analytical complexity involved in verifying the joint concavity of the retailer’s expected profit function with respect to selling prices. To address this challenge, we introduce a novel approach to establish the existence of optimal global prices in the context of non-linear demand and a non-linear, non-concave objective function. Secondly, our study offers practical insights by applying the model to various operational scenarios. We provide guidance on the best pricing strategy when physical store capacity is limited. Depending on customer channel preferences, prioritizing the showroom may lead to higher profits. However, optimizing for profit could result in a reduced market share. In a showroom configuration, the retailer’s choice may shift between exclusive physical and exclusive online retailing to maximize profit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙不缺发布了新的文献求助10
刚刚
Yolo发布了新的文献求助10
刚刚
ss完成签到,获得积分10
1秒前
xq关注了科研通微信公众号
1秒前
iiio0oiii应助霓霓采纳,获得10
1秒前
赵小坤堃发布了新的文献求助10
1秒前
2秒前
昕wei发布了新的文献求助10
2秒前
梧桐完成签到,获得积分10
2秒前
科研通AI6应助淡淡莛采纳,获得10
3秒前
CipherSage应助暮鼓采纳,获得10
3秒前
CC完成签到,获得积分10
3秒前
3秒前
华仔应助清秀翠风采纳,获得10
3秒前
从容的灵凡完成签到,获得积分10
4秒前
4秒前
freshabc发布了新的文献求助10
4秒前
慢慢完成签到,获得积分10
4秒前
huyz发布了新的文献求助10
5秒前
澄澄橙橙紫完成签到,获得积分10
5秒前
5秒前
快乐灵安完成签到,获得积分10
5秒前
qqqwqerf完成签到,获得积分10
5秒前
嘿嘿应助xxxllllll采纳,获得30
6秒前
6秒前
上官若男应助迅速的尔琴采纳,获得10
6秒前
如意的手套完成签到,获得积分10
6秒前
6秒前
栗栗皆辛苦完成签到,获得积分10
6秒前
威武忆山发布了新的文献求助10
6秒前
琢钰发布了新的文献求助10
7秒前
yundong完成签到,获得积分10
7秒前
张三完成签到,获得积分10
8秒前
淡定的紫青完成签到 ,获得积分10
8秒前
8秒前
咯咯葛完成签到,获得积分10
8秒前
李健应助候月采纳,获得10
9秒前
王先生发布了新的文献求助30
9秒前
高飞完成签到,获得积分10
9秒前
传奇3应助一二三采纳,获得30
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401