Optimal pricing for dual-channel retailing with stochastic attraction demand model

利润(经济学) 对偶(语法数字) 频道(广播) 背景(考古学) 微观经济学 计算机科学 需求曲线 供应链 业务 经济 产业组织 营销 电信 古生物学 艺术 文学类 生物
作者
Minh Tam Tran,Yacine Rekik,Khaled Hadj-Hamou
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:268: 109127-109127 被引量:5
标识
DOI:10.1016/j.ijpe.2023.109127
摘要

In dual-channel supply chains, where retailers sell their goods both online and in physical stores, determining the optimal pricing strategy while considering customer behavior is a critical challenge. This study introduces and investigates a dual-channel pricing model that accounts for customer channel choice behavior. Drawing inspiration from market-share models, we incorporate a demand model that reflects the attraction between online and physical stores. Our approach includes stochastic assumptions for potential market demand and price-based interactions between the two channels. In particular, we model the channel’s stochastic demand as a non-linear function of prices and we allow for different customer reactions when the physical store runs out of stock. This paper makes two key contributions. First, we highlight the analytical complexity involved in verifying the joint concavity of the retailer’s expected profit function with respect to selling prices. To address this challenge, we introduce a novel approach to establish the existence of optimal global prices in the context of non-linear demand and a non-linear, non-concave objective function. Secondly, our study offers practical insights by applying the model to various operational scenarios. We provide guidance on the best pricing strategy when physical store capacity is limited. Depending on customer channel preferences, prioritizing the showroom may lead to higher profits. However, optimizing for profit could result in a reduced market share. In a showroom configuration, the retailer’s choice may shift between exclusive physical and exclusive online retailing to maximize profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxf完成签到,获得积分10
刚刚
Aiden完成签到,获得积分10
1秒前
CUN完成签到,获得积分10
1秒前
上官若男应助明理的逍遥采纳,获得10
1秒前
Zzk完成签到,获得积分10
2秒前
PPP完成签到 ,获得积分10
2秒前
传奇3应助开放幻丝采纳,获得10
2秒前
小白发布了新的文献求助10
3秒前
4秒前
糟糕的面包完成签到,获得积分10
5秒前
桐桐应助Annie采纳,获得10
5秒前
DODO完成签到,获得积分10
6秒前
乐乐应助华清如采纳,获得10
7秒前
7秒前
8秒前
啦啦啦啦完成签到,获得积分10
8秒前
wang完成签到,获得积分10
9秒前
10秒前
欧斌完成签到,获得积分10
11秒前
爆米花应助无敌大滨州采纳,获得10
11秒前
12秒前
13秒前
15秒前
16秒前
赘婿应助不觉采纳,获得10
17秒前
折枝念晚宁完成签到,获得积分10
17秒前
酒爱泡芙完成签到,获得积分10
17秒前
17秒前
Orange应助23333采纳,获得10
18秒前
xiaoyu完成签到,获得积分10
18秒前
瓜瓜发布了新的文献求助10
19秒前
CodeCraft应助zcx采纳,获得10
20秒前
20秒前
淼沐发布了新的文献求助10
21秒前
上官若男应助冰与火采纳,获得10
21秒前
浮游应助七七采纳,获得10
21秒前
灰鸽舞完成签到 ,获得积分10
22秒前
22秒前
22秒前
慕青应助橙汁采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719