亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CGMA-Net: Cross-level Guidance and Multi-scale Aggregation Network for Polyp Segmentation

计算机科学 分割 相似性(几何) 人工智能 水准点(测量) 特征(语言学) 模式识别(心理学) 比例(比率) 卷积(计算机科学) 图像(数学) 人工神经网络 物理 哲学 量子力学 地理 语言学 大地测量学
作者
Jianwei Zheng,Yidong Yan,Liang Zhao,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2023.3345479
摘要

Colonoscopy is considered the best prevention and control method for colorectal cancer, which suffers extremely high rates of mortality and morbidity. Automated polyp segmentation of colonoscopy images is of great importance since manual polyp segmentation requires a considerable time of experienced specialists. However, due to the high similarity between polyps and mucosa, accompanied by the complex morphological features of colonic polyps, the performance of automatic polyp segmentation is still unsatisfactory. Accordingly, we propose a network, namely Cross-level Guidance and Multi-scale Aggregation (CGMA-Net), to earn a performance promotion. Specifically, three modules, including Cross-level Feature Guidance (CFG), Multi-scale Aggregation Decoder (MAD), and Details Refinement (DR), are individually proposed and synergistically assembled. With CFG, we generate spatial attention maps from the higher-level features and then multiply them with the lower-level features, highlighting the region of interest and suppressing the background information. In MAD, we parallelly use multiple dilated convolutions of different sizes to capture long-range dependencies between features. For DR, an asynchronous convolution is used along with the attention mechanism to enhance both the local details and the global information. The proposed CGMA-Net is evaluated on two benchmark datasets, i.e., CVC-ClinicDB and Kvasir-SEG, whose results demonstrate that our method not only presents state-of-the-art performance but also holds relatively fewer parameters. Concretely, we achieve the Dice Similarity Coefficient (DSC) of 91.85% and 95.73% on Kvasir-SEG and CVC-ClinicDB, respectively. The assessment of model generalization is also conducted, resulting in DSC scores of 86.25% and 86.97% on the two datasets respectively. Codes are available at https://github.com/ZhengJianwei2/CGMA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbjcp3发布了新的文献求助30
3秒前
clyde凌丫关注了科研通微信公众号
19秒前
Swear完成签到 ,获得积分10
21秒前
22秒前
ZSJ发布了新的文献求助10
26秒前
ZSJ完成签到,获得积分10
31秒前
34秒前
clyde凌丫发布了新的文献求助10
40秒前
oleskarabach发布了新的文献求助10
46秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
Z1X2J3Y4完成签到,获得积分10
1分钟前
qqq完成签到,获得积分10
1分钟前
阿尼亚发布了新的文献求助10
1分钟前
xlong完成签到,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
2分钟前
CY完成签到,获得积分10
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
hiaoyi完成签到 ,获得积分0
3分钟前
3分钟前
范玉平完成签到,获得积分10
3分钟前
janice完成签到,获得积分10
3分钟前
小石头发布了新的文献求助10
3分钟前
豆乳米麻薯完成签到,获得积分10
3分钟前
小石头完成签到,获得积分20
3分钟前
lbjcp3发布了新的文献求助10
3分钟前
4分钟前
华仔应助lbjcp3采纳,获得10
4分钟前
4分钟前
松子发布了新的文献求助10
4分钟前
fleeper发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Akim应助fleeper采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
fleeper完成签到,获得积分10
4分钟前
大傻春完成签到 ,获得积分10
5分钟前
5分钟前
remohu完成签到,获得积分10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795187
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146