CGMA-Net: Cross-level Guidance and Multi-scale Aggregation Network for Polyp Segmentation

计算机科学 分割 相似性(几何) 人工智能 水准点(测量) 特征(语言学) 模式识别(心理学) 比例(比率) 卷积(计算机科学) 图像(数学) 人工神经网络 物理 哲学 量子力学 地理 语言学 大地测量学
作者
Jianwei Zheng,Yidong Yan,Liang Zhao,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2023.3345479
摘要

Colonoscopy is considered the best prevention and control method for colorectal cancer, which suffers extremely high rates of mortality and morbidity. Automated polyp segmentation of colonoscopy images is of great importance since manual polyp segmentation requires a considerable time of experienced specialists. However, due to the high similarity between polyps and mucosa, accompanied by the complex morphological features of colonic polyps, the performance of automatic polyp segmentation is still unsatisfactory. Accordingly, we propose a network, namely Cross-level Guidance and Multi-scale Aggregation (CGMA-Net), to earn a performance promotion. Specifically, three modules, including Cross-level Feature Guidance (CFG), Multi-scale Aggregation Decoder (MAD), and Details Refinement (DR), are individually proposed and synergistically assembled. With CFG, we generate spatial attention maps from the higher-level features and then multiply them with the lower-level features, highlighting the region of interest and suppressing the background information. In MAD, we parallelly use multiple dilated convolutions of different sizes to capture long-range dependencies between features. For DR, an asynchronous convolution is used along with the attention mechanism to enhance both the local details and the global information. The proposed CGMA-Net is evaluated on two benchmark datasets, i.e., CVC-ClinicDB and Kvasir-SEG, whose results demonstrate that our method not only presents state-of-the-art performance but also holds relatively fewer parameters. Concretely, we achieve the Dice Similarity Coefficient (DSC) of 91.85% and 95.73% on Kvasir-SEG and CVC-ClinicDB, respectively. The assessment of model generalization is also conducted, resulting in DSC scores of 86.25% and 86.97% on the two datasets respectively. Codes are available at https://github.com/ZhengJianwei2/CGMA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanghw发布了新的文献求助10
刚刚
Frank完成签到,获得积分10
刚刚
桐桐应助小喵采纳,获得10
刚刚
香蕉觅云应助执笔客采纳,获得10
刚刚
light完成签到 ,获得积分10
刚刚
你仔细听完成签到,获得积分10
1秒前
1秒前
Sailzyf完成签到,获得积分10
1秒前
抓恐龙发布了新的文献求助10
1秒前
1秒前
汉堡包应助言小采纳,获得10
2秒前
Chen发布了新的文献求助10
2秒前
lql233完成签到,获得积分20
2秒前
雪白问兰完成签到 ,获得积分10
2秒前
2秒前
魅力蜗牛完成签到,获得积分10
2秒前
2秒前
upup小李完成签到 ,获得积分10
3秒前
手帕很忙完成签到,获得积分10
3秒前
害羞含雁发布了新的文献求助10
3秒前
3秒前
zp完成签到 ,获得积分10
3秒前
ren发布了新的文献求助10
4秒前
Lucas应助踏实的小海豚采纳,获得10
4秒前
Lucas应助2go采纳,获得10
4秒前
Jasper应助日月山河永在采纳,获得10
5秒前
5秒前
6秒前
6秒前
慕青应助没有名称采纳,获得10
6秒前
HEIKU应助聪慧的机器猫采纳,获得10
6秒前
拼搏翠桃发布了新的文献求助10
7秒前
8个老登发布了新的文献求助10
8秒前
8秒前
hhy完成签到,获得积分10
8秒前
孙一雯发布了新的文献求助30
9秒前
9秒前
Xxxnnian完成签到,获得积分20
10秒前
fancy发布了新的文献求助10
10秒前
apple完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672