CGMA-Net: Cross-Level Guidance and Multi-Scale Aggregation Network for Polyp Segmentation

计算机科学 分割 相似性(几何) 人工智能 水准点(测量) 特征(语言学) 模式识别(心理学) 比例(比率) 卷积(计算机科学) 图像(数学) 人工神经网络 物理 哲学 量子力学 地理 语言学 大地测量学
作者
Jianwei Zheng,Yidong Yan,Liang Zhao,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1424-1435 被引量:2
标识
DOI:10.1109/jbhi.2023.3345479
摘要

Colonoscopy is considered the best prevention and control method for colorectal cancer, which suffers extremely high rates of mortality and morbidity. Automated polyp segmentation of colonoscopy images is of great importance since manual polyp segmentation requires a considerable time of experienced specialists. However, due to the high similarity between polyps and mucosa, accompanied by the complex morphological features of colonic polyps, the performance of automatic polyp segmentation is still unsatisfactory. Accordingly, we propose a network, namely Cross-level Guidance and Multi-scale Aggregation (CGMA-Net), to earn a performance promotion. Specifically, three modules, including Cross-level Feature Guidance (CFG), Multi-scale Aggregation Decoder (MAD), and Details Refinement (DR), are individually proposed and synergistically assembled. With CFG, we generate spatial attention maps from the higher-level features and then multiply them with the lower-level features, highlighting the region of interest and suppressing the background information. In MAD, we parallelly use multiple dilated convolutions of different sizes to capture long-range dependencies between features. For DR, an asynchronous convolution is used along with the attention mechanism to enhance both the local details and the global information. The proposed CGMA-Net is evaluated on two benchmark datasets, i.e., CVC-ClinicDB and Kvasir-SEG, whose results demonstrate that our method not only presents state-of-the-art performance but also holds relatively fewer parameters. Concretely, we achieve the Dice Similarity Coefficient (DSC) of 91.85% and 95.73% on Kvasir-SEG and CVC-ClinicDB, respectively. The assessment of model generalization is also conducted, resulting in DSC scores of 86.25% and 86.97% on the two datasets respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzs完成签到,获得积分10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
ddd发布了新的文献求助20
1秒前
JamesPei应助钻石采纳,获得10
2秒前
yznfly应助仁爱钢笔采纳,获得30
2秒前
2秒前
3秒前
6秒前
spinor完成签到,获得积分10
6秒前
8R60d8应助VDC采纳,获得10
7秒前
YP_024完成签到,获得积分10
8秒前
热心市民小红花应助ddd采纳,获得10
8秒前
共享精神应助tomorrow采纳,获得10
8秒前
研友_VZG7GZ应助喵喵采纳,获得10
9秒前
Ava应助俊逸的剑愁采纳,获得10
9秒前
9秒前
烟花应助XHH1994采纳,获得10
10秒前
bigpluto发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
王先生发布了新的文献求助10
15秒前
搜集达人应助Rixxed采纳,获得10
15秒前
柯幼萱完成签到,获得积分10
15秒前
15秒前
木light完成签到,获得积分10
16秒前
杳鸢应助Michelle米筛哦采纳,获得30
16秒前
16秒前
17秒前
邵邵发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089