材料科学
涂层
铈
环氧树脂
腐蚀
化学工程
Zeta电位
复合材料
纳米技术
冶金
工程类
纳米颗粒
作者
Can He,Meng Cai,Yu Huang,Xiaoqiang Fan,Minhao Zhu
标识
DOI:10.1016/j.compositesb.2023.111144
摘要
Despite Ti3C2Tx MXene has certified tremendous promise for improving the anti-corrosion/wear of epoxy resin, it falls short of matching the protective standards under long-term extreme conditions. Herein, 2-methylimidazole zinc salt ZIF-8 was grown in-situ on amino-functionalized Ti3C2Tx nanosheets and doped with cerium cations (P+-Ti3C2Tx@ZCe). The Ti3C2Tx-based composite was then parallel arranged within epoxy coating utilizing electrophoretic deposition technique to prepare a novel self-healing intelligent coating (PMX@ZCe). The encapsulation structure of P+-Ti3C2Tx@ZCe was investigated by XRD, FTIR, XPS, FE-SEM, TEM, Zeta potential and TG techniques. Furthermore, the corrosion/wear resistance and self-healing performances of PMX@ZCe were discussed detailedly and the strengthening mechanism of P+-Ti3C2Tx@ZCe was revealed. Results indicate that PMX@ZCe maintains the highest |Z|0.01Hz value of 1.24 × 1010 Ω cm2 after 4 weeks of electrochemical test and exhibits excellent self-healing efficiency of 153 % under artificial scratch, which is ascribed to the release of Ce3+/Ce4+ that could form insoluble protective films at the coating/metal interface. The wear rate of PMX@ZCe is 2.29 × 10−5 mm3/N · m about 56 % lower than that of EP. PMX@ZCe possesses satisfactory corrosion/wear protection performance, thanks to the synergy of good interfacial interaction, parallel-aligned barrier effect and active-passive protection. This work provides a new design thinking for MXene-based intelligent protective coatings that can meet the demands of multi-service environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI