Damage detection and location using a simulated annealing-artificial hummingbird algorithm with an improved objective function

蜂鸟 模拟退火 算法 计算机科学 功能(生物学) 人工智能 生物 生态学 进化生物学
作者
Zhen Chen,Yikai Wang,Kun Zhang,Tommy H.T. Chan,Zhihao Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (1): 129-147 被引量:8
标识
DOI:10.1177/14759217241233733
摘要

Swarm intelligence algorithms and finite element model update technology are important issues in the field of structural damage detection. However, the complexity of engineering structural models normally leads to low computational efficiency and large detection errors in structural damage detection. To solve these problems, a simulated annealing-artificial hummingbird algorithm (SA-AHA) is proposed based on the artificial hummingbird algorithm (AHA). The Sobol sequence is used to improve the identification efficiency by optimizing the initial population distribution of the AHA. Then, the simulated annealing strategy is introduced to improve the detection accuracy by enhancing the global search ability of the AHA. In addition, a novel objective function is presented by combining modal flexibility residual, natural frequency residual, and trace sparse constraint of the structural model. Numerical simulations of a simply supported beam and a two-story rigid frame are carried out to verify the superiority of the proposed SA-AHA and the objective function. Simulation results demonstrate that the SA-AHA is better than the AHA in terms of damage computational efficiency and damage identification accuracy. Moreover, the new objective function can be more excellently applied to the SA-AHA than the previous one, which can be effectively used to locate and estimate the damage of the proposed SA-AHA in structure. Finally, experimental studies are carried out to verify the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxx发布了新的文献求助10
刚刚
微笑的丑完成签到,获得积分20
1秒前
1秒前
lulu完成签到,获得积分10
1秒前
Ava应助661采纳,获得10
1秒前
种花家的狗狗完成签到,获得积分10
1秒前
柯nb发布了新的文献求助10
1秒前
科研通AI6应助难过的谷芹采纳,获得30
2秒前
FashionBoy应助木子采纳,获得10
2秒前
刘欣悦完成签到 ,获得积分10
2秒前
要努力鸭完成签到,获得积分10
2秒前
粽子关注了科研通微信公众号
2秒前
CodeCraft应助szc-2000采纳,获得10
2秒前
Pothos应助忧虑的羊采纳,获得10
2秒前
3秒前
龚昊完成签到,获得积分10
3秒前
科研通AI6应助cyj采纳,获得10
3秒前
素心发布了新的文献求助10
4秒前
所所应助翻似烂柯人采纳,获得10
4秒前
4秒前
4秒前
5秒前
hahah发布了新的文献求助10
5秒前
5秒前
科研通AI6应助承乐采纳,获得10
5秒前
5秒前
6秒前
白日梦想家完成签到 ,获得积分10
6秒前
6秒前
6秒前
hardtime完成签到,获得积分20
8秒前
1sss完成签到,获得积分10
8秒前
9秒前
9秒前
兔子发布了新的文献求助10
9秒前
研友_8opMyL发布了新的文献求助10
9秒前
smottom应助ykg采纳,获得10
9秒前
上官若男应助300采纳,获得10
9秒前
脾气暴躁的小兔完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603