A novel regulatory sex-skewing method that inhibits testicular DPY30 expression to increase female rate of dairy goat offspring

生物 男科 人口 精子 后代 精子发生 基因敲除 生物技术 内分泌学 遗传学 怀孕 医学 细胞凋亡 环境卫生
作者
Huanshan He,Xiang Li,Jintao Li,Yong Ning,Jun Luo,Huaiping Shi
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skad422
摘要

Abstract The demand for goat milk products has increased exponentially with the growth of the global population. The shortage of dairy products will be addressed extraordinarily by manipulating the female rate of goat offspring to expand the goat population and goat milk yield. No studies have reported bioinformatic analyses of X- and Y-bearing sperm of dairy goats, although this will contribute to exploring novel and applied sex-skewing technologies. Regulatory subunit of the histone methyltransferase complex (DPY30) was determined to be the key differentially expressed protein (DEP) among 15 DEPs identified in the present study. The spatiotemporal expression of DPY30 strongly suggested a functional involvement of the protein in spermatogenesis. DPY30 promoted meiosis via upregulating SYCP3, which played a crucial role in mediating sex ratio skewing in goats. Although DPY30 suppressed the self-renewal of spermatogonia stem cells through AKT/PLZF, DPY30 inhibition in the testis did not induce testicular dysgenesis. Based on the biosafety assessment in mice testes, lentivirus-mediated DPY30 knockdown in bucks’ testes increased X-bearing sperm proportion and female kids’ rate (22.8 percentage points) without affecting sperm quality, pregnancy rate, and kidding rate. This study provides the first evidence of the DEGs in the sexed sperm of dairy goats. DPY30 inhibition in the testes of bucks increased the female kids’ rate without influencing reproductive performance. The present study provides evidence for expanding the female dairy goat population to address the concern of dairy product shortage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苍蝇搓手完成签到,获得积分10
刚刚
裘文献发布了新的文献求助10
刚刚
杳鸢应助冰美式采纳,获得30
1秒前
嗳7完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
zy123发布了新的文献求助10
3秒前
今后应助。.。采纳,获得10
3秒前
4秒前
guang98765发布了新的文献求助10
4秒前
嗳7发布了新的文献求助10
4秒前
裘文献完成签到,获得积分10
5秒前
Silverexile发布了新的文献求助10
5秒前
5秒前
5秒前
花花发布了新的文献求助10
5秒前
刺猬发布了新的文献求助10
6秒前
algarhythm发布了新的文献求助30
6秒前
6秒前
7秒前
habalo完成签到,获得积分10
7秒前
典雅书雪发布了新的文献求助10
8秒前
顾矜应助naturehome采纳,获得10
8秒前
8秒前
8秒前
细腻的山河完成签到 ,获得积分10
9秒前
幽默沛山发布了新的文献求助10
9秒前
暮色微凉完成签到,获得积分20
9秒前
sunguoyi完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
负责冰凡关注了科研通微信公众号
10秒前
11秒前
Ghooor发布了新的文献求助10
11秒前
99发布了新的文献求助10
11秒前
福医小蟹发布了新的文献求助10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470559
求助须知:如何正确求助?哪些是违规求助? 3063526
关于积分的说明 9084066
捐赠科研通 2754015
什么是DOI,文献DOI怎么找? 1511182
邀请新用户注册赠送积分活动 698310
科研通“疑难数据库(出版商)”最低求助积分说明 698182