TransC-GD-CD: Transformer-Based Conditional Generative Diffusion Change Detection Model

变压器 变更检测 计算机科学 生成模型 生成语法 模式识别(心理学) 人工智能 电气工程 工程类 电压
作者
Yihan Wen,Zhuo Zhang,Qi Cao,Guanchong Niu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7144-7158 被引量:9
标识
DOI:10.1109/jstars.2024.3373201
摘要

Change Detection (CD) methodologies have garnered substantial attention owing to their capability to monitor alterations in geographic spaces across temporal intervals, especially with the acquisition of high-resolution Remote Sensing images. However, challenges persist due to dissimilar imaging conditions and temporal windows. Although deep-learning (DL) architectures have shown promise in addressing challenges in CD, many existing methods struggle to capture long-range dependencies and local spatial information effectively. The current CD methods rely heavily on pure CNNs and Transformers, which employ only single-pass forward propagation. This approach leads to inadequate utilization of feature information, resulting in inaccurate CD maps, particularly when discerning edges. To overcome these limitations, we propose a Transformer-based conditional generative diffusion method for CD, named TransC-GD-CD, tailored for RS data. This approach leverages the numerous sampling iterations of the DDPM, contributing to the generation of high-quality CD maps. In addition, the Frequency Cross Transformer (FCT) mechanism seamlessly amalgamates CD condition with the noise feature within the DDPM. The innovative mechanism effectively bridges diffusion noise and conditional semantic terrains. Moreover, a novel multi-type difference extraction module, named Appear-Disappear-Concat (ADC), is devised to partition the CD task to optimize both segmentation extraction and CD classification, overcoming the persistent challenge of information loss endemic to conventional CD algorithms like simple subtraction. We demonstrate the superiority of TransC-GD-CD by comparing the experiment results against various algorithms across three widely-used CD datasets, namely CDD, WHU, and LEVIR. The code for this work will be available on https://github.com/YihanWen/DDPM-based-Change-Detection .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坤坤发布了新的文献求助10
3秒前
wind发布了新的文献求助10
3秒前
4秒前
Azed完成签到,获得积分20
4秒前
5秒前
5秒前
行歌完成签到,获得积分10
6秒前
hhhhhheeeeee完成签到,获得积分10
6秒前
wanci应助yixuan采纳,获得10
8秒前
liang发布了新的文献求助10
8秒前
8秒前
星辰完成签到,获得积分10
8秒前
小盛完成签到 ,获得积分10
9秒前
Gasoline.发布了新的文献求助10
9秒前
科研通AI6应助风中垣采纳,获得10
10秒前
10秒前
路见不平发布了新的文献求助10
11秒前
优秀静珊发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
路漫漫123完成签到,获得积分10
13秒前
13秒前
嗑盐废物完成签到,获得积分20
13秒前
JamesPei应助六的飞起采纳,获得10
14秒前
15秒前
失眠的菠萝完成签到,获得积分10
15秒前
乐满完成签到,获得积分10
15秒前
11234发布了新的文献求助10
15秒前
AAA发布了新的文献求助10
15秒前
胜天半子发布了新的文献求助30
18秒前
18秒前
思源应助lqq采纳,获得10
18秒前
18秒前
cossen完成签到,获得积分10
19秒前
lld发布了新的文献求助10
19秒前
大个应助CYC采纳,获得10
19秒前
20秒前
20秒前
彭于晏应助xiaoyan采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009