Supervised contrastive learning enhances MHC-II peptide binding affinity prediction

计算生物学 人工智能 计算机科学 化学 机器学习 生物 生物化学
作者
Long-Chen Shen,Yan Liu,Zi Liu,Yumeng Zhang,Zhikang Wang,Yuming Guo,Jamie Rossjohn,Jiangning Song,Dong‐Jun Yu
标识
DOI:10.1101/2023.12.21.572942
摘要

Abstract Accurate prediction of major histocompatibility complex (MHC)-peptide binding affinity can improve our understanding of cellular immune responses and guide personalized immunotherapies. Nevertheless, the existing deep learning-based approaches for predicting MHC-II peptide interactions fall short of satisfactory performance and offer restricted model interpretability. In this study, we propose a novel deep neural network, termed ConBoTNet, to address the above issues by introducing the designed supervised contrastive learning and bottleneck transformer extractors. Specifically, the supervised contrastive learning pre-training enhances the model’s representative and generalizable capabilities on MHC-II peptides by pulling positive pairs closer and pushing negative pairs further in the feature space, while the bottleneck transformer module focuses on MHC-II peptide interactions to precisely identify binding cores and anchor positions in an unsupervised manner. Extensive experiments on benchmark datasets under 5-fold cross-validation, leave-one-molecule-out validation, independent testing, and binding core prediction settings highlighted the superiority of our proposed ConBoTNet over current state-of-the-art methods. Data distribution analysis in the latent feature space demonstrated that supervised contrastive learning can aggregate MHC-II-peptide samples with similar affinity labels and learn common features of similar affinity. Additionally, we interpreted the trained neural network by associating the attention weights with peptides and innovatively find both well-established and potential peptide motifs. This work not only introduces an innovative tool for accurately predicting MHC-II peptide affinity, but also provides new insights into a new paradigm for modeling essential biological interactions, advancing data-driven discovery in biomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyyyyz发布了新的文献求助10
1秒前
董小帅完成签到,获得积分10
2秒前
3秒前
尔尔完成签到,获得积分20
4秒前
4秒前
窦房结发布了新的文献求助10
5秒前
傲娇如天完成签到,获得积分10
5秒前
没所谓发布了新的文献求助10
5秒前
5秒前
wangjun发布了新的文献求助10
6秒前
6秒前
残忆完成签到 ,获得积分10
7秒前
qimiao发布了新的文献求助10
7秒前
tomato的痛苦你不知道完成签到,获得积分10
9秒前
拼搏热狗完成签到,获得积分20
9秒前
闻歌发布了新的文献求助10
9秒前
shy完成签到,获得积分10
10秒前
iNk应助小轩窗zst采纳,获得10
10秒前
科研通AI2S应助窦房结采纳,获得10
10秒前
jinq发布了新的文献求助10
10秒前
12秒前
聪明曼凡发布了新的文献求助10
12秒前
heavenhorse应助单薄海亦采纳,获得10
13秒前
科研通AI2S应助拼搏热狗采纳,获得10
13秒前
搜集达人应助闻歌采纳,获得10
14秒前
火火完成签到,获得积分10
14秒前
当女遇到乔完成签到 ,获得积分10
14秒前
tyt完成签到 ,获得积分10
14秒前
15秒前
Orange应助222采纳,获得10
15秒前
kaixindian完成签到,获得积分10
15秒前
15秒前
甜蜜阑悦完成签到,获得积分10
16秒前
16秒前
16秒前
Owen应助等风、也等你采纳,获得200
16秒前
科研小兔发布了新的文献求助10
17秒前
jinq完成签到,获得积分20
17秒前
wen发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3409029
求助须知:如何正确求助?哪些是违规求助? 3012875
关于积分的说明 8856626
捐赠科研通 2700194
什么是DOI,文献DOI怎么找? 1480314
科研通“疑难数据库(出版商)”最低求助积分说明 684290
邀请新用户注册赠送积分活动 678614