NLP Sentiment Analysis and Accounting Transparency: A New Era of Financial Record Keeping

情绪分析 透明度(行为) 财务报表 财务报表分析 会计 语调(文学) 财务分析 财务比率 业务 计算机科学 人工智能 审计 语言学 计算机安全 哲学
作者
Alessio Faccia,Julie A. K. McDonald,Babu George
出处
期刊:Computers [MDPI AG]
卷期号:13 (1): 5-5 被引量:1
标识
DOI:10.3390/computers13010005
摘要

Transparency in financial reporting is crucial for maintaining trust in financial markets, yet fraudulent financial statements remain challenging to detect and prevent. This study introduces a novel approach to detecting financial statement fraud by applying sentiment analysis to analyse the textual data within financial reports. This research aims to identify patterns and anomalies that might indicate fraudulent activities by examining the language and sentiment expressed across multiple fiscal years. The study focuses on three companies known for financial statement fraud: Wirecard, Tesco, and Under Armour. Utilising Natural Language Processing (NLP) techniques, the research analyses polarity (positive or negative sentiment) and subjectivity (degree of personal opinion) within the financial statements, revealing intriguing patterns. Wirecard showed a consistent tone with a slight decrease in 2018, Tesco exhibited marked changes in the fraud year, and Under Armour presented subtler shifts during the fraud years. While the findings present promising trends, the study emphasises that sentiment analysis alone cannot definitively detect financial statement fraud. It provides insights into the tone and mood of the text but cannot reveal intentional deception or financial discrepancies. The results serve as supplementary information, enriching traditional financial analysis methods. This research contributes to the field by exploring the potential of sentiment analysis in financial fraud detection, offering a unique perspective that complements quantitative methods. It opens new avenues for investigation and underscores the need for an integrated, multidimensional approach to fraud detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
july九月发布了新的文献求助10
1秒前
1秒前
酷波er应助西瓜采纳,获得10
2秒前
2秒前
生动友容发布了新的文献求助10
3秒前
林林宁宁完成签到 ,获得积分10
5秒前
大胆曼岚发布了新的文献求助10
5秒前
丘比特应助林佳一采纳,获得10
6秒前
6秒前
小七应助马马马采纳,获得30
7秒前
RR发布了新的文献求助10
7秒前
TT完成签到,获得积分20
7秒前
7秒前
杨金城完成签到,获得积分10
8秒前
科研公主完成签到,获得积分10
8秒前
9秒前
10秒前
Jack80发布了新的文献求助30
10秒前
大模型应助危机的雪旋采纳,获得10
11秒前
Xavier发布了新的文献求助10
11秒前
从容的丹南完成签到 ,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
充电宝应助organicboy采纳,获得10
12秒前
12秒前
NexusExplorer应助岳红健采纳,获得10
12秒前
壮观砖家发布了新的文献求助20
14秒前
怕孤单应助个qwieid采纳,获得10
15秒前
15秒前
15秒前
Wang发布了新的文献求助30
15秒前
16秒前
Lynn怯霜静发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
jun发布了新的文献求助10
17秒前
晨雾关注了科研通微信公众号
18秒前
苏小狸完成签到,获得积分10
18秒前
18秒前
yaoli0823完成签到,获得积分10
18秒前
辛勤愚志完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672