NLP Sentiment Analysis and Accounting Transparency: A New Era of Financial Record Keeping

情绪分析 透明度(行为) 财务报表 财务报表分析 会计 语调(文学) 财务分析 财务比率 业务 计算机科学 人工智能 审计 语言学 计算机安全 哲学
作者
Alessio Faccia,Julie A. K. McDonald,Babu George
出处
期刊:Computers [MDPI AG]
卷期号:13 (1): 5-5 被引量:1
标识
DOI:10.3390/computers13010005
摘要

Transparency in financial reporting is crucial for maintaining trust in financial markets, yet fraudulent financial statements remain challenging to detect and prevent. This study introduces a novel approach to detecting financial statement fraud by applying sentiment analysis to analyse the textual data within financial reports. This research aims to identify patterns and anomalies that might indicate fraudulent activities by examining the language and sentiment expressed across multiple fiscal years. The study focuses on three companies known for financial statement fraud: Wirecard, Tesco, and Under Armour. Utilising Natural Language Processing (NLP) techniques, the research analyses polarity (positive or negative sentiment) and subjectivity (degree of personal opinion) within the financial statements, revealing intriguing patterns. Wirecard showed a consistent tone with a slight decrease in 2018, Tesco exhibited marked changes in the fraud year, and Under Armour presented subtler shifts during the fraud years. While the findings present promising trends, the study emphasises that sentiment analysis alone cannot definitively detect financial statement fraud. It provides insights into the tone and mood of the text but cannot reveal intentional deception or financial discrepancies. The results serve as supplementary information, enriching traditional financial analysis methods. This research contributes to the field by exploring the potential of sentiment analysis in financial fraud detection, offering a unique perspective that complements quantitative methods. It opens new avenues for investigation and underscores the need for an integrated, multidimensional approach to fraud detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
win应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Kirito应助科研通管家采纳,获得50
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
阿莲娜发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
seun发布了新的文献求助10
2秒前
ssf5910发布了新的文献求助10
2秒前
直率雪糕完成签到 ,获得积分10
2秒前
3秒前
5秒前
拼搏松鼠发布了新的文献求助10
5秒前
小于发布了新的文献求助10
5秒前
疯狂的小蘑菇完成签到,获得积分20
6秒前
wlkq完成签到,获得积分20
7秒前
灵巧鑫发布了新的文献求助10
7秒前
pluto应助yu采纳,获得10
8秒前
吴小磊完成签到,获得积分10
9秒前
斯文败类应助小于采纳,获得10
10秒前
中将发布了新的文献求助10
11秒前
幸福的小刺猬完成签到 ,获得积分10
11秒前
脑洞疼应助YeMa采纳,获得10
13秒前
orixero应助能干的明轩采纳,获得10
13秒前
14秒前
田様应助wlkq采纳,获得10
14秒前
Owen应助追风采纳,获得10
15秒前
zzy完成签到,获得积分10
15秒前
苏梓陌完成签到 ,获得积分10
16秒前
Carrie发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602734
求助须知:如何正确求助?哪些是违规求助? 4687724
关于积分的说明 14851119
捐赠科研通 4685087
什么是DOI,文献DOI怎么找? 2540031
邀请新用户注册赠送积分活动 1506793
关于科研通互助平台的介绍 1471448