亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial Feature Regularization and Label Decoupling Based Cross-Subject Motor Imagery EEG Decoding

计算机科学 脑电图 解码方法 运动表象 人工智能 模式识别(心理学) 解耦(概率) 加权 特征(语言学) 脑-机接口 语音识别 算法 工程类 哲学 控制工程 放射科 精神科 医学 语言学 心理学
作者
Yifan Zhou,Tian-jian Luo,Xiaochen Zhang,Te Han
出处
期刊:Lecture Notes in Computer Science 卷期号:: 407-423
标识
DOI:10.1007/978-981-99-8558-6_34
摘要

Motor imagery (MI) serves as a vital approach to constructing brain-computer interfaces (BCIs) based on electroencephalogram (EEG) signals. However, the time-variant and label-coupling characteristics of EEG signals, combined with the limited sample sizes, often necessitate MI-EEG decoding across subjects. Unfortunately, existing methods encounter challenges related to interference from out-of-distribution features and feature-label coupling, resulting in the deterioration of decoding performance. To address these issues, this paper proposes a novel MI-EEG feature learning framework that focuses on decoupling features from labels and regularizing the feature representation. The proposed framework leverages aligned MI-EEG samples to extract Gaussian weighting regularized spatial features. Subsequently, a domain adaptation method is employed to decouple the extracted features from labels across different subjects’ domains, thereby facilitating cross-subject MI-EEG decoding. To evaluate the effectiveness and efficiency of the proposed method, we conducted experiments using three benchmark MI-EEG datasets, consisting of four distinct groups of experiments. The experimental results demonstrate the effectiveness, efficiency, and parameter insensitivity of the proposed method, indicating its significant application value in the field of MI-EEG decoding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhuajw完成签到,获得积分10
4秒前
难过忆山发布了新的文献求助10
24秒前
29秒前
sssss发布了新的文献求助40
33秒前
sssss完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
汉堡包应助桃子e采纳,获得10
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
伊伊伊伊一一一完成签到,获得积分10
3分钟前
ding应助scn666采纳,获得10
3分钟前
思源应助桃子e采纳,获得10
3分钟前
欣喜的香菱完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
难过忆山发布了新的文献求助10
4分钟前
英姑应助Zz采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hq完成签到 ,获得积分10
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
6分钟前
天天快乐应助Fluoxtine采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617