Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs With Asynchronous Deep Reinforcement Learning

跳频扩频 干扰 异步通信 强化学习 计算机科学 扩频 频率分配 资源配置 计算机网络 增强学习 电信 物理 人工智能 频道(广播) 热力学
作者
Ning Rao,Hua Xu,Dan Wang,Zisen Qi,Yue Zhang,Wanyi Gu,Xiang Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 13560-13577 被引量:1
标识
DOI:10.1109/jsen.2024.3369038
摘要

Jamming against frequency-hopping spread spectrum (FHSS) in wireless sensor networks (WSNs) has been primarily investigated with the follower jamming mode. However, implementing follower jamming in practical applications encounters manifold challenges, such as stringent requirements on hardware performance and difficulties in attaining accurate synchronization with signals. Diverging from existing works, in this article, we propose a novel partial-band noise jamming (PBNJ) decision-making algorithm based on asynchronous deep reinforcement learning (DRL), which can allocate central jamming frequency and bandwidth more efficiently in FHSS jamming. First, we model the problem of allocating jamming resource of PBNJ to disrupt the FHSS communication in WSNs as a Markov decision process (MDP). Next, considering the interrelationship among decisions made by different jamming nodes (JNs), we construct a multistep decision framework in a time-division manner, and the long short-term memory (LSTM) network is leveraged to fully extract decision features from historical data, capturing correlations between jamming strategies of the deployed JNs, and guides future jamming decisions and enhances collaboration among different JNs in jamming resources allocation. Furthermore, to accelerate the convergence, we adopt the asynchronous advantage actor–critic (A3C) algorithm to optimize the allocation of central jamming frequency and bandwidth of JNs, utilizing the architecture of multithreaded parallel training, and update the actor network and critic network in an asynchronous gradient descent manner. Simulation results show that the proposed LSTM-A3C algorithm converges fast and outperforms various baselines in terms of the convergence speed, jamming success rate, and the total reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruizhi发布了新的文献求助10
刚刚
1秒前
文艺雪糕完成签到,获得积分10
1秒前
2秒前
滴滴哒哒完成签到 ,获得积分10
3秒前
小马甲应助科研通管家采纳,获得10
6秒前
猪猪完成签到 ,获得积分20
6秒前
lalala应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
英勇巨人发布了新的文献求助10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
学术通zzz发布了新的文献求助10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
yufanhui应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
yu应助科研通管家采纳,获得10
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
ZaZa完成签到,获得积分10
7秒前
yu应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
科研通AI2S应助勤劳茗采纳,获得10
10秒前
10秒前
英勇巨人完成签到,获得积分10
12秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240036
求助须知:如何正确求助?哪些是违规求助? 2885081
关于积分的说明 8236777
捐赠科研通 2553351
什么是DOI,文献DOI怎么找? 1381580
科研通“疑难数据库(出版商)”最低求助积分说明 649282
邀请新用户注册赠送积分活动 624979