Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs With Asynchronous Deep Reinforcement Learning

跳频扩频 干扰 异步通信 强化学习 计算机科学 扩频 频率分配 资源配置 计算机网络 增强学习 电信 物理 人工智能 热力学 频道(广播)
作者
Ning Rao,Hua Xu,Dan Wang,Zisen Qi,Yue Zhang,Wanyi Gu,Xiang Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (8): 13560-13577 被引量:1
标识
DOI:10.1109/jsen.2024.3369038
摘要

Jamming against frequency-hopping spread spectrum (FHSS) in wireless sensor networks (WSNs) has been primarily investigated with the follower jamming mode. However, implementing follower jamming in practical applications encounters manifold challenges, such as stringent requirements on hardware performance and difficulties in attaining accurate synchronization with signals. Diverging from existing works, in this article, we propose a novel partial-band noise jamming (PBNJ) decision-making algorithm based on asynchronous deep reinforcement learning (DRL), which can allocate central jamming frequency and bandwidth more efficiently in FHSS jamming. First, we model the problem of allocating jamming resource of PBNJ to disrupt the FHSS communication in WSNs as a Markov decision process (MDP). Next, considering the interrelationship among decisions made by different jamming nodes (JNs), we construct a multistep decision framework in a time-division manner, and the long short-term memory (LSTM) network is leveraged to fully extract decision features from historical data, capturing correlations between jamming strategies of the deployed JNs, and guides future jamming decisions and enhances collaboration among different JNs in jamming resources allocation. Furthermore, to accelerate the convergence, we adopt the asynchronous advantage actor–critic (A3C) algorithm to optimize the allocation of central jamming frequency and bandwidth of JNs, utilizing the architecture of multithreaded parallel training, and update the actor network and critic network in an asynchronous gradient descent manner. Simulation results show that the proposed LSTM-A3C algorithm converges fast and outperforms various baselines in terms of the convergence speed, jamming success rate, and the total reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seek完成签到,获得积分10
刚刚
Akim应助dadadaniu采纳,获得10
刚刚
2秒前
5秒前
皇帝的床帘完成签到,获得积分10
8秒前
10秒前
诸觅双发布了新的文献求助10
11秒前
糊涂的丹南完成签到 ,获得积分10
15秒前
糊涂的不尤完成签到 ,获得积分10
16秒前
想不出昵称完成签到,获得积分10
18秒前
20秒前
could发布了新的文献求助10
21秒前
24秒前
科研通AI5应助William_l_c采纳,获得10
25秒前
田様应助zzy采纳,获得10
25秒前
27秒前
27秒前
星辰大海应助拼搏的雪莲采纳,获得10
27秒前
超级野狼发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
七月流火应助科研通管家采纳,获得10
30秒前
七月流火应助科研通管家采纳,获得20
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
QOP应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
QOP应助科研通管家采纳,获得10
30秒前
31秒前
agui完成签到 ,获得积分10
33秒前
爆米花应助莹儿采纳,获得10
34秒前
34秒前
34秒前
Owen应助hihi采纳,获得10
35秒前
小小小珂卿完成签到,获得积分10
36秒前
默默向雪完成签到,获得积分0
38秒前
灵犀完成签到,获得积分10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675420
求助须知:如何正确求助?哪些是违规求助? 3230256
关于积分的说明 9789371
捐赠科研通 2941121
什么是DOI,文献DOI怎么找? 1612331
邀请新用户注册赠送积分活动 761072
科研通“疑难数据库(出版商)”最低求助积分说明 736614