Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs With Asynchronous Deep Reinforcement Learning

跳频扩频 干扰 异步通信 强化学习 计算机科学 扩频 频率分配 资源配置 计算机网络 增强学习 电信 物理 人工智能 频道(广播) 热力学
作者
Ning Rao,Hua Xu,Dan Wang,Zisen Qi,Yue Zhang,Wanyi Gu,Xiang Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 13560-13577 被引量:1
标识
DOI:10.1109/jsen.2024.3369038
摘要

Jamming against frequency-hopping spread spectrum (FHSS) in wireless sensor networks (WSNs) has been primarily investigated with the follower jamming mode. However, implementing follower jamming in practical applications encounters manifold challenges, such as stringent requirements on hardware performance and difficulties in attaining accurate synchronization with signals. Diverging from existing works, in this article, we propose a novel partial-band noise jamming (PBNJ) decision-making algorithm based on asynchronous deep reinforcement learning (DRL), which can allocate central jamming frequency and bandwidth more efficiently in FHSS jamming. First, we model the problem of allocating jamming resource of PBNJ to disrupt the FHSS communication in WSNs as a Markov decision process (MDP). Next, considering the interrelationship among decisions made by different jamming nodes (JNs), we construct a multistep decision framework in a time-division manner, and the long short-term memory (LSTM) network is leveraged to fully extract decision features from historical data, capturing correlations between jamming strategies of the deployed JNs, and guides future jamming decisions and enhances collaboration among different JNs in jamming resources allocation. Furthermore, to accelerate the convergence, we adopt the asynchronous advantage actor–critic (A3C) algorithm to optimize the allocation of central jamming frequency and bandwidth of JNs, utilizing the architecture of multithreaded parallel training, and update the actor network and critic network in an asynchronous gradient descent manner. Simulation results show that the proposed LSTM-A3C algorithm converges fast and outperforms various baselines in terms of the convergence speed, jamming success rate, and the total reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春风十里完成签到,获得积分10
1秒前
1秒前
lulu发布了新的文献求助10
1秒前
sun发布了新的文献求助10
1秒前
赵鹏完成签到,获得积分10
1秒前
菠萝吹雪发布了新的文献求助10
1秒前
1秒前
SunnyYim发布了新的文献求助10
1秒前
田様应助maomao采纳,获得10
2秒前
20011013发布了新的文献求助10
2秒前
sugkook完成签到,获得积分20
2秒前
自然香岚发布了新的文献求助10
2秒前
JamesPei应助下雨天采纳,获得10
2秒前
小桑桑完成签到,获得积分10
3秒前
3秒前
苏卿发布了新的文献求助100
3秒前
jack完成签到,获得积分10
4秒前
4秒前
4秒前
鞘皮发布了新的文献求助20
4秒前
活泼红牛发布了新的文献求助10
4秒前
4秒前
汉堡包应助墨西哥猪肉卷采纳,获得10
4秒前
4秒前
5秒前
芙芙完成签到,获得积分10
6秒前
MarcoPolo发布了新的文献求助10
6秒前
wangR完成签到,获得积分10
7秒前
7秒前
7秒前
yyyy发布了新的文献求助10
7秒前
夜神月完成签到 ,获得积分10
7秒前
7秒前
CodeCraft应助32采纳,获得10
8秒前
8秒前
好叭发布了新的文献求助10
8秒前
zhuzhu完成签到,获得积分10
8秒前
wxx完成签到 ,获得积分10
9秒前
宽宽发布了新的文献求助10
9秒前
lulu完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563