Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs With Asynchronous Deep Reinforcement Learning

跳频扩频 干扰 异步通信 强化学习 计算机科学 扩频 频率分配 资源配置 计算机网络 增强学习 电信 物理 人工智能 热力学 频道(广播)
作者
Ning Rao,Hua Xu,Dan Wang,Zisen Qi,Yue Zhang,Wanyi Gu,Xiang Peng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 13560-13577 被引量:1
标识
DOI:10.1109/jsen.2024.3369038
摘要

Jamming against frequency-hopping spread spectrum (FHSS) in wireless sensor networks (WSNs) has been primarily investigated with the follower jamming mode. However, implementing follower jamming in practical applications encounters manifold challenges, such as stringent requirements on hardware performance and difficulties in attaining accurate synchronization with signals. Diverging from existing works, in this article, we propose a novel partial-band noise jamming (PBNJ) decision-making algorithm based on asynchronous deep reinforcement learning (DRL), which can allocate central jamming frequency and bandwidth more efficiently in FHSS jamming. First, we model the problem of allocating jamming resource of PBNJ to disrupt the FHSS communication in WSNs as a Markov decision process (MDP). Next, considering the interrelationship among decisions made by different jamming nodes (JNs), we construct a multistep decision framework in a time-division manner, and the long short-term memory (LSTM) network is leveraged to fully extract decision features from historical data, capturing correlations between jamming strategies of the deployed JNs, and guides future jamming decisions and enhances collaboration among different JNs in jamming resources allocation. Furthermore, to accelerate the convergence, we adopt the asynchronous advantage actor–critic (A3C) algorithm to optimize the allocation of central jamming frequency and bandwidth of JNs, utilizing the architecture of multithreaded parallel training, and update the actor network and critic network in an asynchronous gradient descent manner. Simulation results show that the proposed LSTM-A3C algorithm converges fast and outperforms various baselines in terms of the convergence speed, jamming success rate, and the total reward.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助黄紫红蓝采纳,获得10
1秒前
纪汶欣发布了新的文献求助20
1秒前
pluto应助幽默尔蓝采纳,获得10
1秒前
专注的问寒应助ss采纳,获得20
2秒前
Nicole发布了新的文献求助10
3秒前
3秒前
3秒前
传奇3应助调皮的炳采纳,获得10
3秒前
依依完成签到 ,获得积分20
3秒前
科目三应助灰色头像采纳,获得10
3秒前
王麒发布了新的文献求助10
4秒前
4秒前
飞奔的五花肉完成签到,获得积分10
4秒前
usokb完成签到,获得积分10
4秒前
紫菱星君完成签到,获得积分10
5秒前
秦梓涵的妈妈完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
大个应助青山采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
CXR完成签到,获得积分10
8秒前
科目三应助甜叶菊采纳,获得10
8秒前
和科比发布了新的文献求助10
8秒前
小柒完成签到,获得积分20
9秒前
科研通AI6应助徐仁森采纳,获得10
9秒前
D&L发布了新的文献求助10
10秒前
TheDay发布了新的文献求助10
10秒前
10秒前
10秒前
慕青应助憨憨采纳,获得10
10秒前
CNJX完成签到,获得积分10
10秒前
王梓磬发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398