Efficient Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in WSNs With Asynchronous Deep Reinforcement Learning

跳频扩频 干扰 异步通信 强化学习 计算机科学 扩频 频率分配 资源配置 计算机网络 增强学习 电信 物理 人工智能 频道(广播) 热力学
作者
Ning Rao,Hua Xu,Dan Wang,Zisen Qi,Yue Zhang,Wanyi Gu,Xiang Peng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (8): 13560-13577 被引量:1
标识
DOI:10.1109/jsen.2024.3369038
摘要

Jamming against frequency-hopping spread spectrum (FHSS) in wireless sensor networks (WSNs) has been primarily investigated with the follower jamming mode. However, implementing follower jamming in practical applications encounters manifold challenges, such as stringent requirements on hardware performance and difficulties in attaining accurate synchronization with signals. Diverging from existing works, in this article, we propose a novel partial-band noise jamming (PBNJ) decision-making algorithm based on asynchronous deep reinforcement learning (DRL), which can allocate central jamming frequency and bandwidth more efficiently in FHSS jamming. First, we model the problem of allocating jamming resource of PBNJ to disrupt the FHSS communication in WSNs as a Markov decision process (MDP). Next, considering the interrelationship among decisions made by different jamming nodes (JNs), we construct a multistep decision framework in a time-division manner, and the long short-term memory (LSTM) network is leveraged to fully extract decision features from historical data, capturing correlations between jamming strategies of the deployed JNs, and guides future jamming decisions and enhances collaboration among different JNs in jamming resources allocation. Furthermore, to accelerate the convergence, we adopt the asynchronous advantage actor–critic (A3C) algorithm to optimize the allocation of central jamming frequency and bandwidth of JNs, utilizing the architecture of multithreaded parallel training, and update the actor network and critic network in an asynchronous gradient descent manner. Simulation results show that the proposed LSTM-A3C algorithm converges fast and outperforms various baselines in terms of the convergence speed, jamming success rate, and the total reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
orixero应助kk采纳,获得10
1秒前
路灯下的小伙完成签到,获得积分10
1秒前
英姑应助追寻依风采纳,获得10
1秒前
2秒前
只道寻常发布了新的文献求助10
2秒前
123456发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
zwy109发布了新的文献求助10
5秒前
NexusExplorer应助凉皮亮晶晶采纳,获得10
5秒前
6秒前
加贝峥发布了新的文献求助10
6秒前
6秒前
7秒前
zwy109发布了新的文献求助10
7秒前
wanci应助杰卿采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
只道寻常完成签到,获得积分10
7秒前
ZJPPPP应助科研通管家采纳,获得10
7秒前
kluberos关注了科研通微信公众号
7秒前
hby完成签到,获得积分10
7秒前
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
山山而川完成签到,获得积分10
8秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
耍酷小贾完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646