亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contest Schemes and Dynamic Incentive Provision

竞赛 标杆管理 激励 计算机科学 经济 事前 微观经济学 计量经济学 政治学 宏观经济学 管理 法学
作者
Qintao Fan,Nicole Johnson
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.00035
摘要

Simple contest schemes, which tend to use extreme contemporaneous peer benchmarking, are generally thought to be less efficient at motivating productive and cooperative effort than explicit bonus contracts that optimally weight observed own and peer outputs. We show, however, that contest schemes can outperform explicit bonus contracts in a two-period dynamic setting if periodic output is correlated over time, and contract terms can be renegotiated. In our model, all parties update their beliefs about ex ante unknown time-invariant noise upon observing first-period outputs, and second-period wage offers are updated accordingly. This creates first-period shirking incentives for the agents. We show that relative to bonus contracts, the extreme contemporaneous peer benchmarking in contest schemes can weaken or even eliminate the adverse incentives created by prior-period benchmarking, even though the available information and the learning process are the same under both schemes. This dynamic advantage allows contest schemes to outperform repeated bonus contracts for a wide range of parameter values, despite imposing higher static efficiency losses in each period. If competing agents are assigned to sufficiently similar tasks, a contest scheme’s ability to sever the statistical link between periods can yield not only higher early productive effort compared with bonus contracts, but also less uncooperative behavior, despite putting the agents in a more contest-like situation. This paper was accepted by Brian Bushee, accounting. Supplemental Material: The online appendices are available at https://doi.org/10.1287/mnsc.2022.00035 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英姑应助yg采纳,获得10
1秒前
量子星尘发布了新的文献求助10
4秒前
Marciu33发布了新的文献求助10
4秒前
Elthrai完成签到 ,获得积分10
8秒前
15秒前
15秒前
落沧发布了新的文献求助10
20秒前
28秒前
落沧完成签到,获得积分10
34秒前
35秒前
无极微光应助S1998采纳,获得20
40秒前
Owen应助你嵙这个期刊没买采纳,获得10
41秒前
彭于晏应助00hello00采纳,获得10
45秒前
53秒前
54秒前
56秒前
地老天框发布了新的文献求助10
58秒前
赞zan发布了新的文献求助10
1分钟前
赞zan完成签到,获得积分10
1分钟前
迷人世开完成签到,获得积分10
1分钟前
1分钟前
李玉博完成签到 ,获得积分10
1分钟前
整齐的飞兰完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
小豹子完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助yanifang采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
AXX041795发布了新的文献求助10
1分钟前
烟花应助luming采纳,获得30
1分钟前
西瓜霜发布了新的文献求助10
1分钟前
1分钟前
西瓜霜完成签到,获得积分10
1分钟前
领导范儿应助AXX041795采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110