衰减
电磁辐射
吸收(声学)
波长
材料科学
光学
反射(计算机编程)
波传播
散射
功率(物理)
计算物理学
物理
计算机科学
量子力学
程序设计语言
作者
An Zhang,Xiayi Liu,Zhilong Wang,Bo Sun,Tong Zhao
标识
DOI:10.1088/1361-6501/ad1eb5
摘要
Abstract The propagation of GHz electromagnetic (EM) waves across cells in cell solutions has been analytically modeled and numerically calculated in order to elucidate the power loss in the boundary between dispersed medium and cell by establishing a theoretical model. Living and dead yeast cells are chosen as objects because of the simple cell structure and ease of observation under optical microscope. Through the model, the average power density of the incident wave S avi , reflected wave S avr , transmitted wave S avt , and ratio of the power loss ψ are calculated and compared to analyze the power loss of EM waves inside living and dead yeast cells by considering the impacts of frequency of EM wave, cell viability, concentration, and component structures of the cell. Results demonstrate decreased S avi , S avr , and S avt with rising frequency, especially noticeable below 100 MHz due to enhanced absorption from cell components. EM waves in living yeast cell solutions exhibit faster attenuation and stronger reflection compared to dead yeast cells, attributed to intact organelles and membranes intensifying absorption and scattering. The increasing cells concentration further attenuates EM waves. This work elucidates propagation and power loss of EM waves in cell solutions and provides an effective computational approach to optimize EM wave based biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI