Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:26
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助落后的哈密瓜采纳,获得10
刚刚
mia完成签到,获得积分10
1秒前
晾猫人发布了新的文献求助10
2秒前
小树枝完成签到,获得积分20
2秒前
欣慰墨镜发布了新的文献求助10
3秒前
qq完成签到,获得积分20
3秒前
Malmever完成签到,获得积分10
3秒前
gwff发布了新的文献求助10
3秒前
彭于晏应助稀罕你采纳,获得10
3秒前
共享精神应助肉肉采纳,获得10
4秒前
秋向秋完成签到,获得积分10
4秒前
大伟完成签到,获得积分10
4秒前
胡国武完成签到 ,获得积分10
5秒前
捞鱼发布了新的文献求助10
6秒前
6秒前
7秒前
大翟发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
dypdyp应助凯凯采纳,获得10
10秒前
oleskarabach完成签到,获得积分20
10秒前
罗小甜发布了新的文献求助10
10秒前
技术阿兰完成签到,获得积分10
10秒前
海藻糖发布了新的文献求助10
10秒前
武映易完成签到 ,获得积分10
11秒前
12秒前
cc完成签到,获得积分10
12秒前
12秒前
CCD完成签到,获得积分10
13秒前
13秒前
13秒前
o30发布了新的文献求助10
13秒前
13秒前
14秒前
小周发布了新的文献求助10
14秒前
酥饼完成签到,获得积分10
15秒前
15秒前
oleskarabach发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836