Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄浦江完成签到,获得积分10
刚刚
小常完成签到 ,获得积分10
刚刚
危机的盼晴完成签到,获得积分10
2秒前
烟花应助钟情紫色短裤采纳,获得10
2秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助12345采纳,获得10
4秒前
4秒前
keyanzhang完成签到,获得积分10
5秒前
5秒前
风趣之云完成签到 ,获得积分10
5秒前
wanghh发布了新的文献求助10
5秒前
Duomo应助siri1313采纳,获得20
5秒前
5秒前
6秒前
酒酒完成签到,获得积分10
6秒前
7秒前
jingxuan发布了新的文献求助10
8秒前
8秒前
慕青应助又欠采纳,获得10
8秒前
奕二叁发布了新的文献求助10
8秒前
研友_VZG7GZ应助詹娜娜采纳,获得10
8秒前
8秒前
云柔竹劲完成签到,获得积分10
9秒前
10秒前
10秒前
田様应助keyanzhang采纳,获得10
10秒前
10秒前
酒贰发布了新的文献求助10
11秒前
12秒前
12秒前
壮观之瑶发布了新的文献求助10
12秒前
12秒前
迅速罡完成签到,获得积分20
12秒前
呆萌荧发布了新的文献求助20
13秒前
共享精神应助林海采纳,获得10
14秒前
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344557
求助须知:如何正确求助?哪些是违规求助? 4479749
关于积分的说明 13944365
捐赠科研通 4376951
什么是DOI,文献DOI怎么找? 2404998
邀请新用户注册赠送积分活动 1397528
关于科研通互助平台的介绍 1369880