Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuzhongyi完成签到,获得积分10
1秒前
2秒前
虚心岂愈完成签到 ,获得积分10
3秒前
3秒前
Cathy发布了新的文献求助10
3秒前
馨妈完成签到 ,获得积分10
4秒前
做好自己发布了新的文献求助10
6秒前
wanci应助做好自己采纳,获得10
12秒前
今后应助无奈的如彤采纳,获得10
14秒前
支雨泽完成签到,获得积分20
17秒前
HHM给HHM的求助进行了留言
18秒前
GB完成签到 ,获得积分10
22秒前
做好自己完成签到,获得积分20
24秒前
coolru完成签到,获得积分10
25秒前
etrh完成签到 ,获得积分10
27秒前
小张完成签到,获得积分10
28秒前
srx完成签到 ,获得积分10
29秒前
娃娃菜妮完成签到 ,获得积分10
31秒前
沙拉酱完成签到 ,获得积分10
31秒前
31秒前
Inversaydie完成签到,获得积分10
32秒前
追风少年完成签到,获得积分10
33秒前
123456789完成签到 ,获得积分10
36秒前
雪影完成签到 ,获得积分10
36秒前
吃不起橘子了完成签到,获得积分10
40秒前
bookgg完成签到 ,获得积分0
40秒前
SFAxzh完成签到 ,获得积分10
41秒前
Cathy完成签到,获得积分10
41秒前
莎莎完成签到 ,获得积分10
42秒前
现代的芹完成签到,获得积分10
45秒前
46秒前
46秒前
迅速千愁完成签到 ,获得积分10
48秒前
核桃发布了新的文献求助10
50秒前
51秒前
ccy_1024完成签到,获得积分10
53秒前
56秒前
慕青应助小任采纳,获得10
56秒前
ho发布了新的文献求助30
57秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378541
求助须知:如何正确求助?哪些是违规求助? 4502955
关于积分的说明 14014761
捐赠科研通 4411567
什么是DOI,文献DOI怎么找? 2423362
邀请新用户注册赠送积分活动 1416284
关于科研通互助平台的介绍 1393703