Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助晚若旧采纳,获得10
1秒前
酷波er应助Lucifer采纳,获得10
1秒前
谦谦发布了新的文献求助30
1秒前
1秒前
杙北完成签到 ,获得积分10
2秒前
飞翔的鱼宝应助T拐拐采纳,获得10
2秒前
ltutui7发布了新的文献求助10
2秒前
乐乐应助KM比比采纳,获得10
2秒前
2秒前
大方师关注了科研通微信公众号
3秒前
3秒前
清清发布了新的文献求助10
3秒前
Lucas应助wise111采纳,获得10
4秒前
秦风关注了科研通微信公众号
4秒前
西蘑菇完成签到,获得积分10
4秒前
小蘑菇应助雪雪啊采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
rr发布了新的文献求助10
5秒前
认真乐双发布了新的文献求助10
5秒前
6秒前
6秒前
忧伤的盼秋完成签到,获得积分10
7秒前
7秒前
YeMa发布了新的文献求助10
7秒前
7秒前
8秒前
123完成签到 ,获得积分10
8秒前
LOVE0077完成签到,获得积分10
8秒前
英姑应助cannice采纳,获得10
9秒前
充电宝应助zhs采纳,获得10
9秒前
王博龙完成签到 ,获得积分10
9秒前
9秒前
之贻发布了新的文献求助10
10秒前
www完成签到,获得积分20
10秒前
HJQ发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
研友_Z6k5Q8发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769