Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xiaohu完成签到 ,获得积分10
1秒前
3秒前
SHIMMER完成签到,获得积分10
3秒前
张亚博发布了新的文献求助10
3秒前
DU发布了新的文献求助10
4秒前
ll完成签到,获得积分10
4秒前
5秒前
ding应助usokb采纳,获得10
5秒前
6秒前
Tonald Yang发布了新的文献求助10
6秒前
冷艳的凡阳完成签到,获得积分10
7秒前
傲娇丹翠完成签到,获得积分10
7秒前
Yang发布了新的文献求助10
8秒前
一个火蓉果啊完成签到,获得积分10
9秒前
重要问筠完成签到,获得积分10
9秒前
Zhoujian发布了新的文献求助10
9秒前
10秒前
curry发布了新的文献求助10
10秒前
丘比特应助henry采纳,获得10
10秒前
Ying应助君莫笑采纳,获得10
10秒前
10秒前
lie完成签到,获得积分10
11秒前
我是老大应助sunyanghu369采纳,获得10
11秒前
DU完成签到,获得积分10
12秒前
老实的大白菜真实的钥匙完成签到,获得积分10
12秒前
米里迷路完成签到,获得积分10
12秒前
13秒前
wwx发布了新的文献求助10
13秒前
summor发布了新的文献求助10
14秒前
灵巧的柚子完成签到,获得积分20
14秒前
熊饼干完成签到,获得积分10
14秒前
苗条棒棒糖完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
虚幻白玉完成签到,获得积分10
17秒前
FashionBoy应助super chan采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057