Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素冰旋完成签到,获得积分10
刚刚
1秒前
NexusExplorer应助滴滴滴采纳,获得10
1秒前
2秒前
liulin完成签到,获得积分10
2秒前
美味又健康完成签到 ,获得积分10
2秒前
小胡发布了新的文献求助10
3秒前
淡定冰双完成签到,获得积分10
3秒前
4秒前
大智若愚骨头完成签到,获得积分10
4秒前
岗岗发布了新的文献求助10
5秒前
完美世界应助Supreme采纳,获得10
6秒前
丫丫完成签到,获得积分10
6秒前
英俊的铭应助叮叮车采纳,获得10
6秒前
6秒前
瘦瘦幻梦发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
8秒前
will214发布了新的文献求助30
8秒前
9秒前
小老虎Milly完成签到,获得积分10
10秒前
10秒前
科研通AI5应助故意的驳采纳,获得30
12秒前
SciGPT应助123采纳,获得10
12秒前
dd完成签到,获得积分10
12秒前
科研q完成签到 ,获得积分10
12秒前
朴实香露完成签到 ,获得积分10
12秒前
李小强完成签到,获得积分10
13秒前
科研通AI5应助夏天不回来采纳,获得10
13秒前
爆米花应助眉间一把刀采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
我爱科研完成签到,获得积分10
15秒前
英姑应助percy采纳,获得10
16秒前
滴滴滴完成签到,获得积分10
16秒前
zzzz完成签到,获得积分10
17秒前
齐天大圣完成签到,获得积分10
17秒前
Crystallize完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178503
求助须知:如何正确求助?哪些是违规求助? 4366768
关于积分的说明 13595915
捐赠科研通 4217093
什么是DOI,文献DOI怎么找? 2312847
邀请新用户注册赠送积分活动 1311701
关于科研通互助平台的介绍 1260036