Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Quellaxjy应助Yara.H采纳,获得10
1秒前
1秒前
阿米巴ing完成签到,获得积分20
1秒前
互助棍哥完成签到,获得积分10
1秒前
2秒前
彼得发布了新的文献求助10
2秒前
3秒前
小蘑菇应助花酒采纳,获得10
3秒前
3秒前
zhy完成签到 ,获得积分10
3秒前
刘谦益发布了新的文献求助10
3秒前
3秒前
舒适店员完成签到,获得积分10
3秒前
4秒前
善学以致用应助chaogeshiren采纳,获得10
5秒前
wxy发布了新的文献求助10
5秒前
好名字发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
guda完成签到 ,获得积分20
7秒前
7秒前
7秒前
天天快乐应助学术蜗牛采纳,获得10
7秒前
冷酷的念柏完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
11秒前
情怀应助赧赧采纳,获得10
12秒前
bkagyin应助哈啊啊啊啊采纳,获得10
12秒前
12秒前
12秒前
111发布了新的文献求助10
13秒前
14秒前
花酒发布了新的文献求助10
14秒前
kentonchow应助zzz采纳,获得10
14秒前
SciGPT应助zzyt采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393938
求助须知:如何正确求助?哪些是违规求助? 4515293
关于积分的说明 14053437
捐赠科研通 4426472
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529