Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:10
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠灭男发布了新的文献求助10
刚刚
chendumo完成签到,获得积分10
刚刚
刚刚
1秒前
勤恳兔子完成签到,获得积分10
1秒前
我是老大应助阿琳采纳,获得10
1秒前
wency发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
含蓄含烟发布了新的文献求助20
4秒前
李爱国应助DW采纳,获得10
4秒前
勤恳兔子发布了新的文献求助10
5秒前
柚子完成签到,获得积分10
5秒前
wuhoo完成签到,获得积分10
6秒前
美满不言完成签到 ,获得积分10
8秒前
叶听枫完成签到,获得积分10
8秒前
滑板发布了新的文献求助10
8秒前
8秒前
深情安青应助善良的易形采纳,获得10
9秒前
10秒前
小马甲应助gaoww采纳,获得10
10秒前
夏大雨关注了科研通微信公众号
10秒前
10秒前
11秒前
Roin完成签到,获得积分10
12秒前
希望天下0贩的0应助maymay采纳,获得10
12秒前
12秒前
12秒前
不想改格式了完成签到,获得积分10
12秒前
失眠灭男完成签到,获得积分20
12秒前
13秒前
14秒前
默默发布了新的文献求助10
14秒前
15秒前
学术混子完成签到,获得积分10
15秒前
脑洞疼应助DW采纳,获得10
15秒前
GK发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160183
求助须知:如何正确求助?哪些是违规求助? 2811217
关于积分的说明 7891442
捐赠科研通 2470335
什么是DOI,文献DOI怎么找? 1315418
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038