Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:26
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花里胡哨hh159完成签到,获得积分20
1秒前
颜靖仇完成签到,获得积分10
1秒前
2秒前
Rosie发布了新的文献求助10
3秒前
4秒前
蒋瑞轩发布了新的文献求助10
5秒前
小鱼儿完成签到,获得积分10
6秒前
旧戏人发布了新的文献求助10
6秒前
shi发布了新的文献求助10
9秒前
9秒前
xiaoliang完成签到,获得积分10
10秒前
10秒前
10秒前
饶丹完成签到,获得积分10
11秒前
轻松的惜芹应助海棠依旧采纳,获得200
11秒前
WSYang完成签到,获得积分10
12秒前
Akim应助shen采纳,获得10
14秒前
14秒前
DT发布了新的文献求助10
15秒前
赖晨靓发布了新的文献求助10
17秒前
酷酷的爆米花完成签到,获得积分10
19秒前
20秒前
22秒前
大个应助小虫采纳,获得10
22秒前
11完成签到,获得积分10
23秒前
23秒前
乐乐应助shi采纳,获得10
24秒前
王祉萱发布了新的文献求助10
25秒前
Avvei完成签到,获得积分10
25秒前
25秒前
路路发布了新的文献求助10
27秒前
英俊的铭应助notsoeasy采纳,获得10
27秒前
Aono完成签到 ,获得积分10
28秒前
研友_VZG7GZ应助11采纳,获得10
28秒前
自由的凛发布了新的文献求助10
29秒前
29秒前
沉默的半凡完成签到,获得积分10
30秒前
海棠依旧给海棠依旧的求助进行了留言
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521