Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富飞阳发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI6应助jankac采纳,获得30
2秒前
2秒前
蔚然然发布了新的文献求助10
2秒前
科研女菩萨阿巴阿巴完成签到,获得积分10
3秒前
躺平的洋仔完成签到,获得积分10
4秒前
AgAin发布了新的文献求助10
4秒前
立秋日发布了新的文献求助10
5秒前
HHHHH发布了新的文献求助10
5秒前
6秒前
自信大雁发布了新的文献求助10
6秒前
11发布了新的文献求助10
7秒前
乐乐应助平常的夏菡采纳,获得10
7秒前
9秒前
所所应助能干储采纳,获得10
10秒前
10秒前
李健的小迷弟应助UTAU采纳,获得10
11秒前
12umi发布了新的文献求助10
11秒前
Zx_1993应助萄哥布鸽采纳,获得20
12秒前
hanyue发布了新的文献求助10
13秒前
yeah完成签到,获得积分10
13秒前
zhou完成签到 ,获得积分10
14秒前
14秒前
14秒前
周爱李完成签到,获得积分10
15秒前
立秋日完成签到,获得积分10
17秒前
如果发布了新的文献求助10
18秒前
xiying发布了新的文献求助10
18秒前
贪玩半仙完成签到 ,获得积分10
18秒前
18秒前
Akim应助RC_Wang采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
奋斗绿蕊发布了新的文献求助10
19秒前
19秒前
20秒前
浮生若梦应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823