亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:40
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Candices发布了新的文献求助10
10秒前
张晓祁完成签到,获得积分10
10秒前
朴素的山蝶完成签到 ,获得积分10
14秒前
19秒前
英俊的铭应助自觉的人龙采纳,获得10
19秒前
20秒前
yueying完成签到,获得积分10
21秒前
23秒前
23秒前
kentonchow应助微笑睫毛采纳,获得10
23秒前
24秒前
24秒前
Celeste发布了新的文献求助10
25秒前
xu完成签到,获得积分10
26秒前
kentonchow应助小解采纳,获得10
26秒前
Shawn发布了新的文献求助10
28秒前
ho应助科研通管家采纳,获得10
31秒前
ho应助科研通管家采纳,获得10
31秒前
31秒前
Celeste发布了新的文献求助10
56秒前
Akim应助Candices采纳,获得10
1分钟前
1分钟前
Pikaluo发布了新的文献求助10
1分钟前
今后应助Celeste采纳,获得10
1分钟前
Candices完成签到,获得积分10
1分钟前
细心八宝粥完成签到 ,获得积分10
1分钟前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
lllllllllzx完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助200
1分钟前
Pikaluo完成签到,获得积分10
1分钟前
希望天下0贩的0应助tt采纳,获得10
1分钟前
1分钟前
1分钟前
顺颂时祺发布了新的文献求助10
1分钟前
1分钟前
2分钟前
FG发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827