Clustering based Point Cloud Representation Learning for 3D Analysis

点云 聚类分析 计算机科学 人工智能 分割 嵌入 判别式 模式识别(心理学) 稳健性(进化) 特征学习 生物化学 化学 基因
作者
Tuo Feng,Wenguan Wang,Xiaohan Wang,Yi Yang,Qinghua Zheng
标识
DOI:10.1109/iccv51070.2023.00761
摘要

Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e., 2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助30
刚刚
华仔应助淡定茉莉采纳,获得10
刚刚
1秒前
flylmy2008完成签到,获得积分10
1秒前
www发布了新的文献求助10
1秒前
ji发布了新的文献求助10
1秒前
123应助欧皇采纳,获得10
2秒前
雪白的冰蓝完成签到,获得积分10
2秒前
Jun完成签到,获得积分20
2秒前
2秒前
友好的匪完成签到,获得积分10
4秒前
LHH发布了新的文献求助10
5秒前
阔达宝莹发布了新的文献求助10
5秒前
halalalaa发布了新的文献求助10
6秒前
细腻的仙人掌给yar的求助进行了留言
8秒前
9秒前
9秒前
mmol发布了新的文献求助10
10秒前
善学以致用应助个性的荆采纳,获得10
10秒前
11秒前
浮浮世世发布了新的文献求助10
12秒前
yang1111完成签到 ,获得积分10
12秒前
平常树叶完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
飞飞完成签到,获得积分10
14秒前
dddddd发布了新的文献求助10
14秒前
……完成签到 ,获得积分10
14秒前
www完成签到,获得积分20
15秒前
明芬发布了新的文献求助10
15秒前
学习使我快乐完成签到 ,获得积分10
15秒前
16秒前
HM完成签到,获得积分10
16秒前
jing发布了新的文献求助10
16秒前
静默发布了新的文献求助10
16秒前
16秒前
自然开山完成签到 ,获得积分10
17秒前
青蛙的第二滴口水完成签到,获得积分10
17秒前
ding应助彩虹捕手采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513