Clustering based Point Cloud Representation Learning for 3D Analysis

点云 聚类分析 计算机科学 人工智能 分割 嵌入 判别式 模式识别(心理学) 稳健性(进化) 特征学习 生物化学 化学 基因
作者
Tuo Feng,Wenguan Wang,Xiaohan Wang,Yi Yang,Qinghua Zheng
标识
DOI:10.1109/iccv51070.2023.00761
摘要

Point cloud analysis (such as 3D segmentation and detection) is a challenging task, because of not only the irregular geometries of many millions of unordered points, but also the great variations caused by depth, viewpoint, occlusion, etc. Current studies put much focus on the adaption of neural networks to the complex geometries of point clouds, but are blind to a fundamental question: how to learn an appropriate point embedding space that is aware of both discriminative semantics and challenging variations? As a response, we propose a clustering based supervised learning scheme for point cloud analysis. Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space for automatically discovering subclass patterns which are latent yet representative across scenes. The mined patterns are, in turn, used to repaint the embedding space, so as to respect the underlying distribution of the entire training dataset and improve the robustness to the variations. Our algorithm is principled and readily pluggable to modern point cloud segmentation networks during training, without extra overhead during testing. With various 3D network architectures (i.e., voxel-based, point-based, Transformer-based, automatically searched), our algorithm shows notable improvements on famous point cloud segmentation datasets (i.e., 2.0-2.6% on single-scan and 2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS, in terms of mIoU). Our algorithm also demonstrates utility in 3D detection, showing 2.0-3.4% mAP gains on KITTI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chall应助学习采纳,获得10
刚刚
小兔叽完成签到 ,获得积分10
1秒前
1秒前
2秒前
小二发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
2秒前
3秒前
胡亚楠完成签到,获得积分10
4秒前
清蒸可达鸭完成签到,获得积分10
4秒前
Gauss应助YZY采纳,获得30
5秒前
牛哥发布了新的文献求助10
6秒前
拉手刹打方向完成签到,获得积分10
6秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
ZOE应助科研通管家采纳,获得50
8秒前
liuliu发布了新的文献求助10
8秒前
道衍先一完成签到,获得积分10
8秒前
思念发布了新的文献求助30
8秒前
Shu舒完成签到,获得积分10
9秒前
9秒前
jstagey完成签到,获得积分10
9秒前
纤指细轻捻完成签到 ,获得积分10
11秒前
michael发布了新的文献求助30
12秒前
牛哥完成签到,获得积分10
12秒前
yooo完成签到,获得积分20
13秒前
合适怡完成签到,获得积分10
14秒前
14秒前
烟花应助Zox采纳,获得10
14秒前
吴晨曦完成签到,获得积分10
14秒前
15秒前
如梦如画完成签到,获得积分10
15秒前
深情安青应助Robust采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370