Revolutionizing CH4-CO2 reforming: Resilient La2O3-Ni@MgAl2O4 catalyst with dual-function synergy

材料科学 催化作用 甲烷 二氧化碳重整 碳纤维 烧结 化学工程 蒸汽重整 纳米技术 合成气 制氢 冶金 复合材料 复合数 有机化学 工程类 化学
作者
Zhihua Cao,Sixue Lin,Guobo Li,Miao Li,Liang Ye,Kun Liu,Wenming Liu,Shule Zhang,Qingxiang Ma,Honggen Peng
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:46: 104050-104050 被引量:4
标识
DOI:10.1016/j.surfin.2024.104050
摘要

The process of converting methane and carbon dioxide (CO2) into more valuable compounds, known as methane-carbon dioxide reforming (DRM), plays a pivotal role in the realm of catalysis. Nickel-based catalysts are widely employed due to their affordability, high initial activity, and abundant availability. Nevertheless, these catalysts frequently encounter challenges such as sintering and carbon accumulation, which can result in rapid inactivation. In this work, a novel La2O3-Ni@MgAl2O4 catalyst was synthesized by a straightforward one-pot method, which exhibited excellent DRM performance and anti-carbon deposition properties, even in 800°C for 100 h, only 1.8% of carbon was formed. The physical and chemical attributes of this novel catalyst were examined employing techniques including TEM, H2-TPR, and Raman characterization, etc. The catalysts prepared by one-pot method exhibited a higher specific surface area, and the interaction between Ni and MgAl2O4 carriers was effectively enhanced by the addition of La2O3, and the dispersion of active metals effectively promoted. The DRM reaction mechanism on the La2O3-Ni@MgAl2O4 catalyst was explored through in situ DRIFTs, which mainly followed the L-H mechanism. The formation of La2O2CO3 is elucidated as an effective strategy to hinder carbon deposition and enhance the catalyst's resilience to carbon accumulation. The introduction of the La2O3-Ni@MgAl2O4 catalyst constitutes a noteworthy contribution to the realm of catalysis by furnishing a more stable and efficient alternative to conventional nickel-based catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Polymer72应助gump996采纳,获得10
刚刚
1秒前
欧阳白凝发布了新的文献求助20
1秒前
1秒前
十七应助杰Sir采纳,获得10
1秒前
凡启驳回了pcr163应助
2秒前
3秒前
超帅傲白发布了新的文献求助10
3秒前
CipherSage应助卤煮卤鸭采纳,获得10
3秒前
诚心的绝悟完成签到,获得积分20
3秒前
JamesPei应助比你大采纳,获得10
4秒前
sindy88发布了新的文献求助10
4秒前
乐观的丹琴完成签到 ,获得积分10
4秒前
过时的不愁完成签到,获得积分10
4秒前
7秒前
lzw123456发布了新的文献求助10
8秒前
9秒前
9秒前
隐形大白菜真实的钥匙完成签到,获得积分10
9秒前
快乐的猪完成签到,获得积分10
10秒前
bkagyin应助古古发SCI采纳,获得10
12秒前
眠眠羊完成签到,获得积分10
13秒前
科研爱好者完成签到 ,获得积分10
13秒前
CaO发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
华仔应助林洛沁采纳,获得10
15秒前
16秒前
16秒前
充电宝应助英勇晓蕾采纳,获得10
16秒前
机灵沛容发布了新的文献求助10
17秒前
科研通AI2S应助如意映易采纳,获得10
17秒前
longqi发布了新的文献求助10
17秒前
17秒前
王倩发布了新的文献求助10
18秒前
Ya发布了新的文献求助10
18秒前
Candice应助呆萌的萝采纳,获得10
19秒前
敏感静完成签到,获得积分10
20秒前
Miao喵1发布了新的文献求助30
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390253
求助须知:如何正确求助?哪些是违规求助? 3001973
关于积分的说明 8801059
捐赠科研通 2688554
什么是DOI,文献DOI怎么找? 1472668
科研通“疑难数据库(出版商)”最低求助积分说明 681042
邀请新用户注册赠送积分活动 673751