亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Antibiotic combinations prediction based on machine learning to multicentre clinical data and drug interaction correlation

抗生素 药品 相关性 计算机科学 机器学习 人工智能 医学 重症监护医学 药理学 数学 生物 微生物学 几何学
作者
Jiaan Qin,Yuhe R. Yang,Chao Ai,Zhaoshuai Ji,Wei Chen,Yingchang Song,Jiayu Zeng,Mei-Li Duan,Wenjie Qi,Shutian Zhang,Zhuoling An,Yang Lin,Sha Xu,Kejun Deng,Hao Lin,Dan Yan
出处
期刊:International Journal of Antimicrobial Agents [Elsevier]
卷期号:63 (5): 107122-107122 被引量:3
标识
DOI:10.1016/j.ijantimicag.2024.107122
摘要

With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589–0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54–73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wdd完成签到 ,获得积分10
2秒前
2秒前
叶子完成签到 ,获得积分10
4秒前
天天好心覃完成签到 ,获得积分10
6秒前
cc完成签到 ,获得积分10
12秒前
19秒前
Lucas应助YouNaive采纳,获得10
19秒前
勤劳的曼冬完成签到,获得积分10
19秒前
ZH完成签到 ,获得积分10
22秒前
李健的小迷弟应助Heheya采纳,获得10
22秒前
无花果应助阿瓜师傅采纳,获得10
23秒前
潇潇雨歇完成签到,获得积分10
25秒前
shuzhao完成签到,获得积分10
26秒前
27秒前
丘比特应助勤劳的曼冬采纳,获得10
28秒前
咖啡味椰果完成签到 ,获得积分10
30秒前
YouNaive发布了新的文献求助10
30秒前
追三完成签到 ,获得积分10
30秒前
Water103完成签到,获得积分20
34秒前
Water103发布了新的文献求助10
36秒前
1111完成签到,获得积分10
40秒前
43秒前
45秒前
填充物完成签到 ,获得积分10
48秒前
XxxxxxENT发布了新的文献求助10
49秒前
Jasper应助鳗鱼凡波采纳,获得10
53秒前
乐乐应助不会飞采纳,获得10
56秒前
宇儿发布了新的文献求助10
56秒前
57秒前
似水流年完成签到 ,获得积分10
1分钟前
完美世界应助学术垃圾采纳,获得10
1分钟前
科研通AI2S应助shuzhao采纳,获得10
1分钟前
可靠从云完成签到 ,获得积分10
1分钟前
1分钟前
XxxxxxENT完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294409
求助须知:如何正确求助?哪些是违规求助? 2930326
关于积分的说明 8445914
捐赠科研通 2602598
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643423