已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Antibiotic combinations prediction based on machine learning to multicentre clinical data and drug interaction correlation

抗生素 药品 相关性 计算机科学 机器学习 人工智能 医学 重症监护医学 药理学 数学 生物 微生物学 几何学
作者
Jiaan Qin,Yuhe R. Yang,Chao Ai,Zhaoshuai Ji,Wei Chen,Yingchang Song,Jiayu Zeng,Mei-Li Duan,Wenjie Qi,Shutian Zhang,Zhuoling An,Yang Lin,Sha Xu,Kejun Deng,Hao Lin,Dan Yan
出处
期刊:International Journal of Antimicrobial Agents [Elsevier]
卷期号:63 (5): 107122-107122 被引量:7
标识
DOI:10.1016/j.ijantimicag.2024.107122
摘要

With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589–0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54–73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助复方蛋酥卷采纳,获得20
2秒前
2秒前
3秒前
英姑应助留胡子的大树采纳,获得10
4秒前
十六夜彦完成签到,获得积分10
4秒前
浮光发布了新的文献求助10
5秒前
菠萝完成签到 ,获得积分0
6秒前
7秒前
9秒前
LA发布了新的文献求助20
11秒前
香蕉觅云应助李国铭采纳,获得10
11秒前
12秒前
orcusyoung发布了新的文献求助10
13秒前
13秒前
在水一方应助DrDaiJune采纳,获得10
13秒前
Takahara2000完成签到,获得积分10
14秒前
斯文怀寒发布了新的文献求助10
15秒前
15秒前
熊猫完成签到,获得积分0
15秒前
18秒前
18秒前
王干完成签到 ,获得积分10
19秒前
灵巧的幻竹完成签到,获得积分10
21秒前
23秒前
科研通AI6应助linliqing采纳,获得10
24秒前
28秒前
默默采枫完成签到,获得积分20
29秒前
机灵的天玉完成签到 ,获得积分10
29秒前
总是很简单完成签到 ,获得积分10
30秒前
31秒前
默默采枫发布了新的文献求助30
33秒前
33秒前
科研通AI2S应助obito采纳,获得10
35秒前
Zhang完成签到 ,获得积分10
35秒前
梓雨关注了科研通微信公众号
35秒前
36秒前
mos2发布了新的文献求助20
36秒前
芊芊发布了新的文献求助10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263