Antibiotic combinations prediction based on machine learning to multicentre clinical data and drug interaction correlation

抗生素 药品 相关性 计算机科学 机器学习 人工智能 医学 重症监护医学 药理学 数学 生物 微生物学 几何学
作者
Jiaan Qin,Yuhe R. Yang,Chao Ai,Zhaoshuai Ji,Wei Chen,Yingchang Song,Jiayu Zeng,Mei-Li Duan,Wenjie Qi,Shutian Zhang,Zhuoling An,Yang Lin,Sha Xu,Kejun Deng,Hao Lin,Dan Yan
出处
期刊:International Journal of Antimicrobial Agents [Elsevier]
卷期号:63 (5): 107122-107122 被引量:3
标识
DOI:10.1016/j.ijantimicag.2024.107122
摘要

With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589–0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54–73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张张完成签到,获得积分10
1秒前
Dream发布了新的文献求助30
1秒前
1秒前
henry完成签到,获得积分10
2秒前
雾蓝发布了新的文献求助10
2秒前
桃子发布了新的文献求助10
2秒前
烟花应助刘星星采纳,获得10
3秒前
一只鱼完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
qianmo完成签到 ,获得积分10
3秒前
jennifercui发布了新的文献求助10
4秒前
rh1006完成签到,获得积分10
4秒前
mrjohn发布了新的文献求助10
4秒前
4秒前
YE完成签到 ,获得积分20
6秒前
李繁蕊发布了新的文献求助10
6秒前
6秒前
6秒前
可可完成签到,获得积分10
6秒前
7秒前
自由寻菱发布了新的文献求助20
8秒前
俏皮元珊发布了新的文献求助10
8秒前
Owen应助YY采纳,获得10
8秒前
优秀的逊发布了新的文献求助10
8秒前
wzm完成签到,获得积分10
9秒前
一年发3篇JACS完成签到,获得积分10
9秒前
9秒前
SciGPT应助木子采纳,获得10
10秒前
66完成签到,获得积分10
10秒前
赵鹏翔发布了新的文献求助10
10秒前
带象完成签到,获得积分10
10秒前
才露尖尖角完成签到,获得积分10
11秒前
幽默服饰完成签到 ,获得积分10
11秒前
芝士就是力量完成签到,获得积分10
11秒前
xr完成签到 ,获得积分10
11秒前
YaoX发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740