Antibiotic combinations prediction based on machine learning to multicentre clinical data and drug interaction correlation

抗生素 药品 相关性 计算机科学 机器学习 人工智能 医学 重症监护医学 药理学 数学 生物 微生物学 几何学
作者
Jiaan Qin,Yuhe R. Yang,Chao Ai,Zhaoshuai Ji,Wei Chen,Yingchang Song,Jiayu Zeng,Mei-Li Duan,Wenjie Qi,Shutian Zhang,Zhuoling An,Yang Lin,Sha Xu,Kejun Deng,Hao Lin,Dan Yan
出处
期刊:International Journal of Antimicrobial Agents [Elsevier BV]
卷期号:63 (5): 107122-107122 被引量:7
标识
DOI:10.1016/j.ijantimicag.2024.107122
摘要

With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589–0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54–73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大黄发布了新的文献求助30
刚刚
勇往直前完成签到,获得积分10
1秒前
2秒前
大力雁菡发布了新的文献求助10
3秒前
悦悦大王发布了新的文献求助10
4秒前
fff发布了新的文献求助10
4秒前
花卷完成签到,获得积分10
5秒前
FashionBoy应助左岸采纳,获得10
5秒前
8秒前
平常的毛豆应助耀阳采纳,获得10
8秒前
胖虎完成签到,获得积分10
9秒前
酷波er应助lllll采纳,获得10
9秒前
大模型应助IDneverd采纳,获得10
10秒前
力劈华山完成签到,获得积分10
10秒前
小洋同学可能不在完成签到,获得积分10
11秒前
无奈行恶完成签到,获得积分10
11秒前
11秒前
Orange应助shenyu采纳,获得10
11秒前
cqbrain123完成签到,获得积分10
12秒前
XLC发布了新的文献求助10
13秒前
大黄完成签到,获得积分10
13秒前
14秒前
14秒前
左岸完成签到,获得积分10
16秒前
16秒前
h。发布了新的文献求助10
16秒前
脑洞疼应助sgb采纳,获得10
17秒前
fff完成签到,获得积分10
18秒前
XLC完成签到,获得积分10
19秒前
19秒前
fanglin123发布了新的文献求助10
20秒前
勇往直前发布了新的文献求助10
20秒前
左岸发布了新的文献求助10
21秒前
我是老大应助Skuld采纳,获得10
22秒前
ffw1完成签到,获得积分10
23秒前
在水一方应助h。采纳,获得10
24秒前
24秒前
rid4iuclous2完成签到,获得积分10
24秒前
小民发布了新的文献求助10
25秒前
羔羊发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075