Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT

医学 前列腺癌 乳腺癌 癌症 肺癌 前列腺 接收机工作特性 正电子发射断层摄影术 放射科 黑色素瘤 肿瘤科 内科学 核医学 癌症研究
作者
Kevin Leung,Steven P. Rowe,Moe S. Sadaghiani,Jeffrey P. Leal,Esther Mena,Peter L. Choyke,Yong Du,Martin G. Pomper
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:65 (4): 643-650 被引量:5
标识
DOI:10.2967/jnumed.123.267048
摘要

Automatic detection and characterization of cancer are important clinical needs to optimize early treatment. We developed a deep, semisupervised transfer learning approach for fully automated, whole-body tumor segmentation and prognosis on PET/CT. Methods: This retrospective study consisted of 611 18F-FDG PET/CT scans of patients with lung cancer, melanoma, lymphoma, head and neck cancer, and breast cancer and 408 prostate-specific membrane antigen (PSMA) PET/CT scans of patients with prostate cancer. The approach had a nnU-net backbone and learned the segmentation task on 18F-FDG and PSMA PET/CT images using limited annotations and radiomics analysis. True-positive rate and Dice similarity coefficient were assessed to evaluate segmentation performance. Prognostic models were developed using imaging measures extracted from predicted segmentations to perform risk stratification of prostate cancer based on follow-up prostate-specific antigen levels, survival estimation of head and neck cancer by the Kaplan–Meier method and Cox regression analysis, and pathologic complete response prediction of breast cancer after neoadjuvant chemotherapy. Overall accuracy and area under the receiver-operating-characteristic (AUC) curve were assessed. Results: Our approach yielded median true-positive rates of 0.75, 0.85, 0.87, and 0.75 and median Dice similarity coefficients of 0.81, 0.76, 0.83, and 0.73 for patients with lung cancer, melanoma, lymphoma, and prostate cancer, respectively, on the tumor segmentation task. The risk model for prostate cancer yielded an overall accuracy of 0.83 and an AUC of 0.86. Patients classified as low- to intermediate- and high-risk had mean follow-up prostate-specific antigen levels of 18.61 and 727.46 ng/mL, respectively (P < 0.05). The risk score for head and neck cancer was significantly associated with overall survival by univariable and multivariable Cox regression analyses (P < 0.05). Predictive models for breast cancer predicted pathologic complete response using only pretherapy imaging measures and both pre- and posttherapy measures with accuracies of 0.72 and 0.84 and AUCs of 0.72 and 0.76, respectively. Conclusion: The proposed approach demonstrated accurate tumor segmentation and prognosis in patients across 6 cancer types on 18F-FDG and PSMA PET/CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桃甜汽水发布了新的文献求助10
1秒前
1秒前
3秒前
星辰大海应助坚强寄翠采纳,获得10
4秒前
鲤鱼完成签到 ,获得积分10
5秒前
5秒前
烟花应助bllnl采纳,获得10
7秒前
今后应助momo采纳,获得10
8秒前
9秒前
10秒前
安静绿蓉发布了新的文献求助10
10秒前
行者+完成签到,获得积分10
12秒前
星辰大海应助雪菜采纳,获得30
12秒前
人小鸭儿大发布了新的文献求助100
12秒前
Russell发布了新的文献求助10
13秒前
cylee发布了新的文献求助10
13秒前
13秒前
乐乐乐乐乐乐应助cloud采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
爆米花应助壮观以松采纳,获得10
16秒前
山橘月发布了新的文献求助10
18秒前
山橘月发布了新的文献求助10
18秒前
山橘月发布了新的文献求助10
18秒前
18秒前
山橘月发布了新的文献求助80
18秒前
山橘月发布了新的文献求助10
18秒前
山橘月发布了新的文献求助10
18秒前
司阔林发布了新的文献求助10
18秒前
19秒前
19秒前
山橘月发布了新的文献求助10
19秒前
山橘月发布了新的文献求助10
19秒前
山橘月发布了新的文献求助30
19秒前
山橘月发布了新的文献求助10
19秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340131
求助须知:如何正确求助?哪些是违规求助? 2968149
关于积分的说明 8632507
捐赠科研通 2647706
什么是DOI,文献DOI怎么找? 1449774
科研通“疑难数据库(出版商)”最低求助积分说明 671539
邀请新用户注册赠送积分活动 660517