亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOv5-Based Improved Model for River Fish Detection

计算机科学 渔业 生物
作者
Wenxin Hua,Min He,Liheng Xu,Gengshen Xiao,Tonglai Liu,Shuangyin Liu
标识
DOI:10.1109/paap60200.2023.10391611
摘要

The models of the YOLO series are of crucial importance in the field of computer vision. YOLOv5 outperforms previous versions by being more powerful, precise, and faster, and has immense utility not only in object detection but also in other areas such as image identification. YOLOv5 outperforms previous versions as it is more potent, precise, and quicker. Nonetheless, there is still more room for development to achieve more efficient results in practical applications. This paper presents an improved version called YOLOv5-CAWIOU, which relies on the CA (Coordinate Attention) technique. In addition, CIOU has been improved. In this paper, no pre-training files are used to compare the experimental results better. Instead, YOLOv5 is optimized to improve the accuracy of model detection, robustness, and performance. The 'Rivr Fish.v10i.YOLOv5pytorch' dataset is employed for testing the models. The recall rate improved by 16.7%. Accuracy decreased by only 5.6%, map_0.5 improved by 6.1% and map_0.5:0.95 improved by 4.8%. Additionally, the model also has better robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
28秒前
lll完成签到,获得积分10
35秒前
41秒前
lll发布了新的文献求助10
43秒前
45秒前
50秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
有人应助lll采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
PePsi完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
lijiauyi1994发布了新的文献求助10
2分钟前
2分钟前
2分钟前
lijiauyi1994完成签到,获得积分10
2分钟前
2分钟前
敏感的花瓣完成签到,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750100
什么是DOI,文献DOI怎么找? 1508958
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896