YOLOv5-Based Improved Model for River Fish Detection

计算机科学 渔业 生物
作者
Wenxin Hua,Min He,Liheng Xu,Gengshen Xiao,Tonglai Liu,Shuangyin Liu
标识
DOI:10.1109/paap60200.2023.10391611
摘要

The models of the YOLO series are of crucial importance in the field of computer vision. YOLOv5 outperforms previous versions by being more powerful, precise, and faster, and has immense utility not only in object detection but also in other areas such as image identification. YOLOv5 outperforms previous versions as it is more potent, precise, and quicker. Nonetheless, there is still more room for development to achieve more efficient results in practical applications. This paper presents an improved version called YOLOv5-CAWIOU, which relies on the CA (Coordinate Attention) technique. In addition, CIOU has been improved. In this paper, no pre-training files are used to compare the experimental results better. Instead, YOLOv5 is optimized to improve the accuracy of model detection, robustness, and performance. The 'Rivr Fish.v10i.YOLOv5pytorch' dataset is employed for testing the models. The recall rate improved by 16.7%. Accuracy decreased by only 5.6%, map_0.5 improved by 6.1% and map_0.5:0.95 improved by 4.8%. Additionally, the model also has better robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黎泱完成签到,获得积分10
3秒前
路过完成签到,获得积分10
4秒前
ayeben完成签到,获得积分10
4秒前
5秒前
锐志无锋完成签到,获得积分10
7秒前
8秒前
Apple发布了新的文献求助10
8秒前
领导范儿应助chenfeng233采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
一二发布了新的文献求助10
9秒前
10秒前
10秒前
hgzz发布了新的文献求助10
10秒前
12秒前
孙皓然发布了新的文献求助10
13秒前
admirat完成签到,获得积分10
13秒前
14秒前
14秒前
Yuan完成签到,获得积分10
15秒前
星辰大海应助龙华之士采纳,获得10
16秒前
自帮助发布了新的文献求助10
16秒前
牧百川完成签到,获得积分20
17秒前
17秒前
舒芙蕾发布了新的文献求助10
17秒前
benlaron发布了新的文献求助10
17秒前
守护完成签到,获得积分10
18秒前
小杭776发布了新的文献求助10
18秒前
18秒前
111完成签到,获得积分10
18秒前
19秒前
深情安青应助苦瓜不哭采纳,获得10
19秒前
七爷完成签到,获得积分10
19秒前
three发布了新的文献求助10
20秒前
深情安青应助Chen采纳,获得30
22秒前
牧百川发布了新的文献求助10
22秒前
研友_5Y9X75完成签到,获得积分10
24秒前
自帮助完成签到,获得积分10
24秒前
852应助七爷采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932