Fabrication of nitrogen-doped reduced graphene oxide/tricobalt tetraoxide composite aerogels with high efficiency, broadband microwave absorption, and good compression recovery performance

材料科学 石墨烯 微波食品加热 制作 吸收(声学) 复合数 氧化物 气凝胶 煅烧 多孔性 复合材料 化学工程 纳米技术 化学 冶金 有机化学 工程类 催化作用 替代医学 病理 物理 医学 量子力学
作者
Ruiwen Shu,Lijuan Nie,Xinyue Liu,Ke Chen
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:190: 106-116 被引量:96
标识
DOI:10.1016/j.jmst.2024.01.006
摘要

The fabrication of advanced graphene-based microwave absorbing materials with thin thickness, wide bandwidth, strong absorption strength, and low filling ratio remains a huge challenge. In this paper, nitrogen-doped reduced graphene oxide/tricobalt tetraoxide (NRGO/Co3O4) composite aerogels were synthesized by a three-step method of solvothermal reaction, high-temperature calcination, and hydrothermal self-assembly. The results showed that the attained NRGO/Co3O4 composite aerogels had a unique three-dimensional porous network structure, extremely low bulk density, and good compression recovery. Furthermore, the effect of the addition amounts of flower-like Co3O4 on the complex dielectric constant and microwave absorption properties of NRGO/Co3O4 composite aerogels was investigated. When the addition amount of Co3O4 was equal to 15 mg, the prepared binary composite aerogel showed the strongest absorption strength of –62.78 dB and a wide absorption bandwidth of 5.5 GHz at a thin thickness of 2.13 mm and a low filling ratio of 15 wt.%. It was worth noting that the maximum absorption bandwidth could reach 6.32 GHz (11.68–18 GHz, spanning the entire Ku-band) at a thickness of 2.24 mm. In addition, the possible microwave absorption mechanism of NRGO/Co3O4 composite aerogels was also proposed. Therefore, this paper will provide a new and simple strategy for preparing RGO-based porous nanocomposites as lightweight, efficient, and broadband microwave absorbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaberella完成签到,获得积分10
刚刚
沐晴发布了新的文献求助150
1秒前
LANER完成签到 ,获得积分10
1秒前
2秒前
xmk完成签到 ,获得积分10
3秒前
cindywu完成签到,获得积分10
3秒前
ccc发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
7秒前
Star1983发布了新的文献求助10
11秒前
11秒前
坚定馒头发布了新的文献求助10
11秒前
项绝义发布了新的文献求助200
12秒前
Supreme发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
17秒前
17秒前
19秒前
青柠发布了新的文献求助10
19秒前
nannan发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
TKTK发布了新的文献求助30
21秒前
Stroeve发布了新的文献求助20
22秒前
26秒前
27秒前
28秒前
30秒前
lelelele发布了新的文献求助10
30秒前
31秒前
ZZZ发布了新的文献求助20
31秒前
爱科研发布了新的文献求助50
31秒前
Ava应助机灵的胡萝卜采纳,获得10
31秒前
258369发布了新的文献求助10
33秒前
cst发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035