Context Spatial Awareness Remote Sensing Image Change Detection Network Based on Graph and Convolution Interaction

计算机科学 空间语境意识 卷积(计算机科学) 遥感 背景(考古学) 图形 人工智能 变更检测 计算机视觉 图像分辨率 理论计算机科学 地质学 人工神经网络 古生物学
作者
Xinyang Song,Zhen Hua,Jinjiang Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2024.3357524
摘要

Remote sensing images are characterized by high dimensionality, complex textures, and large scales. Traditional Convolutional Neural Network (CNN) methods may overlook spatial relationships and contextual information among pixels when dealing with remote sensing data. Therefore, Graph Convolutional Networks (GCN) have emerged as a promising solution. In this paper, we propose a Contextual Spatial Awareness Remote Sensing Image Change Detection Network Based on Graph and Convolution interaction (CSAGC). We aim to enhance the handling of contextual information by introducing multiple augmentation modules. In CSAGC, we propose a high-performance encoder called Congraph that integrates a CNN and a Graph Neural Network (GNN). By preserving the respective features of both branches, we effectively fuse local detailed features and global positional features, achieving superior feature extraction capabilities. Additionally, we design two modules to facilitate the integration of multiscale spatial information: Contextual Spatial Awareness Module (CSAM) and Spatial Integration Module (SIM). CSAM, a crucial module connecting the encoder and decoder, jointly explores contextual features using the current feature branch and high-low level feature branches, leveraging spatial positional information for better content acquisition. SIM, located in the decoder module, aims to integrate the multiscale information outputted by CSAM, complementing the contextual information and improving the overall network’s ability to capture spatial contextual information. We conducted extensive experiments on three datasets, namely LEVIR-CD, WHU-CD, and GZ-CD. The experimental results demonstrate that CSAGC exhibits excellent performance, achieving significant performance improvements compared to state-of-the-art (SOTA) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月发布了新的文献求助10
1秒前
科研通AI5应助CXSCXD采纳,获得10
1秒前
2秒前
MOJIN关注了科研通微信公众号
2秒前
研友_ZbKVX8发布了新的文献求助10
2秒前
2秒前
3秒前
LYSM应助BB婷、采纳,获得10
4秒前
FashionBoy应助蒋念寒采纳,获得10
8秒前
锦鲤完成签到,获得积分10
8秒前
8秒前
杨昕发布了新的文献求助10
8秒前
9秒前
9秒前
Joan_89发布了新的文献求助20
10秒前
10秒前
Theo完成签到 ,获得积分10
11秒前
11秒前
12秒前
aaa发布了新的文献求助10
12秒前
猫了个喵发布了新的文献求助10
13秒前
13秒前
如意板栗发布了新的文献求助10
13秒前
14秒前
孙福禄应助花花521采纳,获得10
14秒前
Lv完成签到,获得积分10
15秒前
汉堡包应助爱学习的曼卉采纳,获得10
15秒前
12345678发布了新的文献求助10
15秒前
深情安青应助麻雀采纳,获得10
16秒前
16秒前
16秒前
内向忆南发布了新的文献求助10
16秒前
BB婷、完成签到,获得积分10
17秒前
EED发布了新的文献求助10
17秒前
17秒前
18秒前
传奇3应助Yelanjiao采纳,获得10
19秒前
20秒前
Rondab应助Amanda采纳,获得10
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452