ePDFpy: A Python-based interactive GUI tool for electron pair distribution function analysis of amorphous materials

Python(编程语言) 计算机科学 对分布函数 无定形固体 分布函数 计算科学 统计物理学 程序设计语言 物理 数学 结晶学 化学 热力学 数学分析
作者
Minhyo Kim,Pilsung Kim,R. Bassiri,Kiran Prasai,M. M. Fejer,H. K. Lee
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:299: 109137-109137
标识
DOI:10.1016/j.cpc.2024.109137
摘要

ePDFpy is an interactive analysis program with a graphical user interface (GUI), designed to process the electron Pair Distribution Function (PDF) analysis of diffraction patterns from Transmission Electron Microscope (TEM), to identify the local atomic structure of amorphous materials. The program offers a user-friendly Python-based interface, providing a straightforward and adaptable workflow for PDF analysis. Various optimization and fitting processes were implemented to accurately reduce the electron diffraction data, including center-fitting and elliptical correction of diffraction data. An improved parameter-estimation feature is available to enhance the efficiency of the fitting process, along with an interactive GUI. ePDFpy will be freely distributed for academic purposes, with additional features, including a beam mask drawing module. Program Title: ePDFpy CPC Library link to program files: https://doi.org/10.17632/sym3sfnh7w.1 Developer's repository link: https://github.com/GWlab-SKKU/ePDFpy Licensing provisions: GNU GPLv3 Programming language: Python Nature of problem: The general process of pair distribution function analysis consists of two major steps: image process on diffraction pattern and fitting appropriate parameters. Both of the procedures are affected by the user's proficiency, which can be responsible for producing inconsistent results and inefficiency. Thus, accurate calculation methods along with fully automated feature is required to enhance the quality of the analysis result. Solution method: ePDFpy offers an unbiased automated image process based on a computer vision algorithm to produce the consistent output of intensity profiles from diffraction patterns. In addition, converting the data structures into a multi-dimensional array enables efficient multi-parameter fitting features by performing parallel computation. All of these features are accomplished using various open-source libraries in the Python community, along with an interactive GUI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助牛牛眉目采纳,获得10
1秒前
2秒前
不一样的光完成签到,获得积分10
3秒前
5秒前
CHN完成签到 ,获得积分10
6秒前
内向的小凡完成签到,获得积分0
10秒前
97完成签到,获得积分10
11秒前
李健的小迷弟应助默默筮采纳,获得10
11秒前
淡然的衣完成签到,获得积分10
14秒前
14秒前
zkk完成签到 ,获得积分10
14秒前
xiaobao完成签到,获得积分20
14秒前
杜兰特发布了新的文献求助10
17秒前
18秒前
18秒前
20秒前
liuguohua126发布了新的文献求助10
22秒前
xingxinghan完成签到 ,获得积分10
23秒前
24秒前
书中魂我自不理会完成签到 ,获得积分10
24秒前
自己发布了新的文献求助10
24秒前
24秒前
666应助牛牛眉目采纳,获得10
28秒前
29秒前
默默筮发布了新的文献求助10
29秒前
Pendragon完成签到,获得积分10
30秒前
犹豫的世倌完成签到,获得积分10
30秒前
充电宝应助自己采纳,获得10
30秒前
xhm发布了新的文献求助10
31秒前
科研通AI2S应助一直采纳,获得10
31秒前
听风者发布了新的文献求助10
33秒前
叫我少爷完成签到 ,获得积分10
35秒前
万能图书馆应助王昕钥采纳,获得10
35秒前
35秒前
龙牙完成签到,获得积分10
39秒前
怕黑的归尘关注了科研通微信公众号
39秒前
小二郎应助雪白丹亦采纳,获得10
40秒前
牛牛眉目发布了新的文献求助10
41秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351