ePDFpy: A Python-based interactive GUI tool for electron pair distribution function analysis of amorphous materials

Python(编程语言) 计算机科学 对分布函数 无定形固体 分布函数 计算科学 统计物理学 程序设计语言 物理 数学 结晶学 化学 热力学 数学分析
作者
Minhyo Kim,Pilsung Kim,R. Bassiri,Kiran Prasai,M. M. Fejer,H. K. Lee
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:299: 109137-109137
标识
DOI:10.1016/j.cpc.2024.109137
摘要

ePDFpy is an interactive analysis program with a graphical user interface (GUI), designed to process the electron Pair Distribution Function (PDF) analysis of diffraction patterns from Transmission Electron Microscope (TEM), to identify the local atomic structure of amorphous materials. The program offers a user-friendly Python-based interface, providing a straightforward and adaptable workflow for PDF analysis. Various optimization and fitting processes were implemented to accurately reduce the electron diffraction data, including center-fitting and elliptical correction of diffraction data. An improved parameter-estimation feature is available to enhance the efficiency of the fitting process, along with an interactive GUI. ePDFpy will be freely distributed for academic purposes, with additional features, including a beam mask drawing module. Program Title: ePDFpy CPC Library link to program files: https://doi.org/10.17632/sym3sfnh7w.1 Developer's repository link: https://github.com/GWlab-SKKU/ePDFpy Licensing provisions: GNU GPLv3 Programming language: Python Nature of problem: The general process of pair distribution function analysis consists of two major steps: image process on diffraction pattern and fitting appropriate parameters. Both of the procedures are affected by the user's proficiency, which can be responsible for producing inconsistent results and inefficiency. Thus, accurate calculation methods along with fully automated feature is required to enhance the quality of the analysis result. Solution method: ePDFpy offers an unbiased automated image process based on a computer vision algorithm to produce the consistent output of intensity profiles from diffraction patterns. In addition, converting the data structures into a multi-dimensional array enables efficient multi-parameter fitting features by performing parallel computation. All of these features are accomplished using various open-source libraries in the Python community, along with an interactive GUI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
秀丽天川发布了新的文献求助10
1秒前
BlackEyes发布了新的文献求助10
1秒前
Orange应助小黄采纳,获得10
1秒前
ding应助搞怪的芷采纳,获得10
2秒前
Crystal发布了新的文献求助10
2秒前
熊博士发布了新的文献求助10
2秒前
蝴蝶鱼发布了新的文献求助10
3秒前
dawn完成签到,获得积分10
3秒前
diong完成签到,获得积分20
3秒前
yee完成签到,获得积分10
3秒前
饼干完成签到,获得积分10
3秒前
烈火凤凰完成签到,获得积分10
4秒前
4秒前
CipherSage应助酷酷的水杯采纳,获得10
4秒前
leey发布了新的文献求助10
5秒前
yohsama发布了新的文献求助10
5秒前
脑洞疼应助jia采纳,获得10
5秒前
5秒前
6秒前
晴天小土豆完成签到 ,获得积分10
6秒前
6秒前
王强完成签到,获得积分10
7秒前
7秒前
李健应助William采纳,获得10
7秒前
积极的邪欢完成签到,获得积分10
7秒前
二十二应助御风采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
萌&完成签到,获得积分10
8秒前
kento给鱿鱼的求助进行了留言
8秒前
9秒前
9秒前
9秒前
10秒前
刘47发布了新的文献求助10
10秒前
皮蛋solo粥完成签到,获得积分20
10秒前
称心的猫咪完成签到,获得积分10
11秒前
Owen应助Lorain采纳,获得10
11秒前
机灵语雪完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709862
求助须知:如何正确求助?哪些是违规求助? 5196870
关于积分的说明 15258745
捐赠科研通 4862555
什么是DOI,文献DOI怎么找? 2610161
邀请新用户注册赠送积分活动 1560499
关于科研通互助平台的介绍 1518208