Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy

对接(动物) 小桶 药理学 计算生物学 糖尿病肾病 小檗碱 医学 基因 生物 基因表达 生物化学 遗传学 转录组 护理部
作者
Xueqin Zhang,Peng Chao,Lei Zhang,Jinyu Lu,Aiping Yang,Hong Jiang,Chen Lǚ
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-17
标识
DOI:10.1080/07391102.2023.2294165
摘要

Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melone完成签到,获得积分10
2秒前
ambition完成签到,获得积分10
4秒前
4秒前
伯爵的猫完成签到,获得积分10
5秒前
7秒前
沐青完成签到,获得积分10
8秒前
8秒前
yaya完成签到 ,获得积分10
9秒前
沙尔发布了新的文献求助10
10秒前
慢跑跑不动的肥仔完成签到,获得积分10
10秒前
知之然完成签到,获得积分10
12秒前
小明仔驳回了666应助
12秒前
星星完成签到,获得积分10
13秒前
Skuld发布了新的文献求助10
13秒前
15秒前
15秒前
Crazy完成签到 ,获得积分10
18秒前
18秒前
领导范儿应助Notdodead采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得30
18秒前
完美世界应助maidongdong采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
orixero应助mint采纳,获得10
19秒前
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
19秒前
牛牛眉目发布了新的文献求助10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374