Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy

对接(动物) 小桶 药理学 计算生物学 糖尿病肾病 小檗碱 医学 基因 生物 基因表达 生物化学 遗传学 转录组 护理部
作者
Xueqin Zhang,Peng Chao,Lei Zhang,Jinyu Lu,Aiping Yang,Hong Jiang,Chen Lü
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-17
标识
DOI:10.1080/07391102.2023.2294165
摘要

Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小杜同学发布了新的文献求助10
刚刚
一直成长完成签到,获得积分10
1秒前
wyzhou20完成签到,获得积分10
1秒前
研友_VZG7GZ应助和谐的寄凡采纳,获得10
2秒前
敌不过时间完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
Ringa完成签到 ,获得积分10
5秒前
6秒前
ncwgx完成签到,获得积分10
7秒前
Yuria发布了新的文献求助10
7秒前
8秒前
欣喜电源完成签到,获得积分10
8秒前
辰勃完成签到,获得积分20
8秒前
carbonhan发布了新的文献求助10
8秒前
科研通AI2S应助a2271559577采纳,获得10
8秒前
十二发布了新的文献求助10
9秒前
希望天下0贩的0应助lss采纳,获得10
9秒前
孟一发布了新的文献求助10
9秒前
十四季白发布了新的文献求助10
10秒前
小肚溜圆完成签到,获得积分10
10秒前
10秒前
谦让萧发布了新的文献求助20
10秒前
领导范儿应助根决采纳,获得10
10秒前
辰勃发布了新的文献求助10
11秒前
瘦瘦含芙发布了新的文献求助10
11秒前
12秒前
wh发布了新的文献求助10
12秒前
14秒前
14秒前
丷橘南完成签到,获得积分10
14秒前
斯文败类应助小樱桃采纳,获得10
15秒前
16秒前
木木完成签到,获得积分10
16秒前
深情安青应助可可期采纳,获得10
17秒前
今后应助347采纳,获得10
17秒前
18秒前
sushi完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919