Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 变压器 人工智能 模式识别(心理学) 地质学 工程类 电气工程 电压
作者
Le Sun,Xinyu Wang,Yuhui Zheng,Zebin Wu,Liyong Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2024.3367374
摘要

The effective combination of hyperspectral image (HSI) and light detection and ranging (LiDAR) data can be utilized for land cover classification. Recently, deep learning-based classification methods, especially those utilizing Transformer networks, have achieved remarkable success. However, deep learning classification methods for multi-source data still encounter various technical challenges, such as the comprehensive utilization of multi-scale information, the lightweight network design, and the efficient fusion strategies for heterogeneous data. To address these challenges, we propose a novel and efficient deep neural network, namely multi-scale 3D-2D mixed CNN feature extraction and multi-source data lightweight attention-free fusion network (M2FNet) based on CNN and Transformer. Through end-to-end training, this network effectively combines heterogeneous information from multiple sources, leading to improved performance in joint classification. Specifically, M2FNet employs a multi-scale 3D-2D mixed CNN design to extract both the spatial-spectral features of HSI and the depth-based elevation features of LiDAR data. Subsequently, the extracted features are fed into a novel encoder comprising a feature enhancement module, designed with mathematical morphology and a dilated convolutional module derived from the self-attention of the conventional Transformer encoder (DConvformer), which plays a crucial role in integrating multi-source information within the network. The well-designed architecture enables the network to acquire multi-scale depth and high-order features, significantly reducing the number of training parameters. Comparative experimental results and ablation studies demonstrate that M2FNet outperforms other advanced methods. The source code is publicly available at https://github.com/cupid6868/M2FNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二发布了新的文献求助10
1秒前
shiyue应助lj采纳,获得10
2秒前
啊哦发布了新的文献求助10
2秒前
嘴嘴发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
mini完成签到,获得积分10
4秒前
大模型应助mofeik采纳,获得10
5秒前
超级梦寒发布了新的文献求助10
6秒前
6秒前
Tobiuo完成签到,获得积分10
6秒前
元谷雪发布了新的文献求助10
6秒前
砺行应助RA000采纳,获得10
6秒前
王sy完成签到 ,获得积分10
7秒前
深蓝完成签到,获得积分10
8秒前
8秒前
阳光不二完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
guo发布了新的文献求助10
12秒前
爱科研168完成签到,获得积分10
12秒前
现代尔芙完成签到 ,获得积分10
12秒前
沐雪完成签到,获得积分10
12秒前
12秒前
考博圣体发布了新的文献求助10
12秒前
李健的粉丝团团长应助tgg采纳,获得10
13秒前
13秒前
搜集达人应助人机采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
sss发布了新的文献求助10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360