Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 变压器 人工智能 模式识别(心理学) 地质学 工程类 电气工程 电压
作者
Le Sun,Xinyu Wang,Yuhui Zheng,Zebin Wu,Liyong Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2024.3367374
摘要

The effective combination of hyperspectral image (HSI) and light detection and ranging (LiDAR) data can be utilized for land cover classification. Recently, deep learning-based classification methods, especially those utilizing Transformer networks, have achieved remarkable success. However, deep learning classification methods for multi-source data still encounter various technical challenges, such as the comprehensive utilization of multi-scale information, the lightweight network design, and the efficient fusion strategies for heterogeneous data. To address these challenges, we propose a novel and efficient deep neural network, namely multi-scale 3D-2D mixed CNN feature extraction and multi-source data lightweight attention-free fusion network (M2FNet) based on CNN and Transformer. Through end-to-end training, this network effectively combines heterogeneous information from multiple sources, leading to improved performance in joint classification. Specifically, M2FNet employs a multi-scale 3D-2D mixed CNN design to extract both the spatial-spectral features of HSI and the depth-based elevation features of LiDAR data. Subsequently, the extracted features are fed into a novel encoder comprising a feature enhancement module, designed with mathematical morphology and a dilated convolutional module derived from the self-attention of the conventional Transformer encoder (DConvformer), which plays a crucial role in integrating multi-source information within the network. The well-designed architecture enables the network to acquire multi-scale depth and high-order features, significantly reducing the number of training parameters. Comparative experimental results and ablation studies demonstrate that M2FNet outperforms other advanced methods. The source code is publicly available at https://github.com/cupid6868/M2FNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxq发布了新的文献求助10
刚刚
研友_VZG7GZ应助冰苏打采纳,获得10
1秒前
ZL发布了新的文献求助10
1秒前
liurencun发布了新的文献求助10
1秒前
1秒前
1秒前
electromx发布了新的文献求助20
2秒前
高贵焦发布了新的文献求助10
2秒前
充电宝应助SYS采纳,获得10
2秒前
昼夜本色发布了新的文献求助10
2秒前
目光之澄发布了新的文献求助10
2秒前
2秒前
xiliii发布了新的文献求助10
2秒前
3秒前
yang666完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
大模型应助maybe豪采纳,获得10
4秒前
华仔应助风清扬采纳,获得10
4秒前
as完成签到,获得积分10
4秒前
打打应助kaiqiang采纳,获得10
5秒前
黄诺雪发布了新的文献求助10
5秒前
5秒前
lvlv发布了新的文献求助10
5秒前
5秒前
moxin发布了新的文献求助10
5秒前
5秒前
善学以致用应助Cheney采纳,获得10
6秒前
希望天下0贩的0应助陈彪采纳,获得10
6秒前
6秒前
6秒前
biubiu完成签到,获得积分10
6秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
wu完成签到 ,获得积分10
8秒前
整齐碧玉发布了新的文献求助10
8秒前
hia发布了新的文献求助20
8秒前
Orange应助呼吸自然采纳,获得10
8秒前
8秒前
在水一方应助下次一定采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807