Upper gastrointestinal haemorrhage patients' survival: A causal inference and prediction study

上消化道出血 重症监护室 格拉斯哥昏迷指数 医学 逆概率加权 概化理论 逻辑回归 生存分析 急诊分诊台 重症监护医学 内科学 急诊医学 外科 统计 内窥镜检查 数学 倾向得分匹配
作者
Fuxing Deng,Yaoyuan Cao,Shuangping Zhao
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (6) 被引量:1
标识
DOI:10.1111/eci.14180
摘要

Abstract Background Upper gastrointestinal (GI) bleeding is a common medical emergency. This study aimed to develop models to predict critically ill patients with upper GI bleeding in‐hospital and 30‐day survival, identify the correlation factor and infer the causality. Methods A total of 2898 patients with upper GI bleeding were included from the Medical Information Mart for Intensive Care‐IV and eICU‐Collaborative Research Database, respectively. To identify the most critical factors contributing to the prognostic model, we used SHAP (SHapley Additive exPlanations) for machine learning interpretability. We performed causal inference using inverse probability weighting for survival‐associated prognostic factors. Results The optimal model using the light GBM (gradient boosting algorithm) algorithm achieved an AUC of .93 for in‐hospital survival, .81 for 30‐day survival in internal testing and .87 for in‐hospital survival in external testing. Important factors for in‐hospital survival, according to SHAP, were SOFA (Sequential organ failure assessment score), GCS (Glasgow coma scale) motor score and length of stay in ICU (Intensive critical care). In contrast, essential factors for 30‐day survival were SOFA, length of stay in ICU, total bilirubin and GCS verbal score. Our model showed improved performance compared to SOFA alone. Conclusions Our interpretable machine learning model for predicting in‐hospital and 30‐day mortality in critically ill patients with upper gastrointestinal bleeding showed excellent accuracy and high generalizability. This model can assist clinicians in managing these patients to improve the discrimination of high‐risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
王含爽发布了新的文献求助10
1秒前
缥缈的寻桃完成签到,获得积分10
1秒前
东风徐来完成签到,获得积分10
2秒前
jeffery111发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
LSJ发布了新的文献求助10
4秒前
4秒前
温婉的心锁完成签到 ,获得积分10
4秒前
shuichong完成签到,获得积分10
4秒前
hzt发布了新的文献求助10
4秒前
5秒前
qing发布了新的文献求助10
5秒前
6秒前
旺仔完成签到,获得积分10
6秒前
猫咪也会微积分完成签到,获得积分20
6秒前
qian完成签到,获得积分10
7秒前
ding应助轻歌水越采纳,获得10
7秒前
8秒前
哈哈怪发布了新的文献求助10
8秒前
sgf完成签到,获得积分10
8秒前
8秒前
9秒前
田様应助CarolineOY采纳,获得10
9秒前
meimei发布了新的文献求助10
9秒前
orixero应助lvzhechen采纳,获得10
10秒前
白豆腐发布了新的文献求助10
10秒前
可爱紫文完成签到 ,获得积分10
11秒前
11秒前
任性柔发布了新的文献求助10
11秒前
刘新宇发布了新的文献求助10
12秒前
sonjsnd发布了新的文献求助10
12秒前
hzt完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939624
求助须知:如何正确求助?哪些是违规求助? 4206076
关于积分的说明 13072741
捐赠科研通 3984470
什么是DOI,文献DOI怎么找? 2181728
邀请新用户注册赠送积分活动 1197448
关于科研通互助平台的介绍 1109668