Upper gastrointestinal haemorrhage patients' survival: A causal inference and prediction study

上消化道出血 重症监护室 格拉斯哥昏迷指数 医学 逆概率加权 概化理论 逻辑回归 生存分析 急诊分诊台 重症监护医学 内科学 急诊医学 外科 统计 数学 倾向得分匹配 内窥镜检查
作者
Fuxing Deng,Yaoyuan Cao,Shuangping Zhao
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (6) 被引量:1
标识
DOI:10.1111/eci.14180
摘要

Abstract Background Upper gastrointestinal (GI) bleeding is a common medical emergency. This study aimed to develop models to predict critically ill patients with upper GI bleeding in‐hospital and 30‐day survival, identify the correlation factor and infer the causality. Methods A total of 2898 patients with upper GI bleeding were included from the Medical Information Mart for Intensive Care‐IV and eICU‐Collaborative Research Database, respectively. To identify the most critical factors contributing to the prognostic model, we used SHAP (SHapley Additive exPlanations) for machine learning interpretability. We performed causal inference using inverse probability weighting for survival‐associated prognostic factors. Results The optimal model using the light GBM (gradient boosting algorithm) algorithm achieved an AUC of .93 for in‐hospital survival, .81 for 30‐day survival in internal testing and .87 for in‐hospital survival in external testing. Important factors for in‐hospital survival, according to SHAP, were SOFA (Sequential organ failure assessment score), GCS (Glasgow coma scale) motor score and length of stay in ICU (Intensive critical care). In contrast, essential factors for 30‐day survival were SOFA, length of stay in ICU, total bilirubin and GCS verbal score. Our model showed improved performance compared to SOFA alone. Conclusions Our interpretable machine learning model for predicting in‐hospital and 30‐day mortality in critically ill patients with upper gastrointestinal bleeding showed excellent accuracy and high generalizability. This model can assist clinicians in managing these patients to improve the discrimination of high‐risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的芷完成签到,获得积分10
刚刚
桐桐应助犹豫的夏旋采纳,获得10
刚刚
哈哈发布了新的文献求助20
1秒前
懒洋洋发布了新的文献求助10
1秒前
1秒前
violenceee发布了新的文献求助10
1秒前
YY完成签到 ,获得积分10
1秒前
YYU完成签到,获得积分20
2秒前
2秒前
3秒前
Jasper应助韩鋆采纳,获得10
3秒前
小tan发布了新的文献求助10
3秒前
3秒前
Stella应助发嗲的芷采纳,获得10
4秒前
kkkkkkkk完成签到,获得积分10
6秒前
7秒前
李俊枫发布了新的文献求助10
8秒前
yznfly应助实验室采纳,获得200
8秒前
8秒前
小蘑菇应助金2022采纳,获得10
8秒前
yzy发布了新的文献求助10
8秒前
小党完成签到,获得积分10
8秒前
LNF发布了新的文献求助10
9秒前
金陵第一大美女完成签到,获得积分10
9秒前
猪咪完成签到,获得积分10
10秒前
英俊的铭应助violenceee采纳,获得10
10秒前
英姑应助zjcbk985采纳,获得10
10秒前
轩辕之柔完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
啥也不会的萌新完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
小僵尸完成签到,获得积分10
14秒前
15秒前
liao应助啥也不会的萌新采纳,获得30
15秒前
独特的初彤完成签到 ,获得积分10
16秒前
顺利的小懒猪完成签到,获得积分10
17秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462