Numerical prediction of fretting fatigue crack growth in scaled railway axles considering fretting wear evolution

微动 材料科学 结构工程 微动磨损 硬化(计算) 有限元法 强度因子 压力(语言学) 冶金 复合材料 断裂力学 工程类 语言学 哲学 图层(电子)
作者
Yihui Dong,Dongfang Zeng,Pingbo Wu,Liantao Lu,Lang Zou,Tian Xu
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:181: 108150-108150 被引量:4
标识
DOI:10.1016/j.ijfatigue.2024.108150
摘要

To predict the fretting fatigue crack growth (FFCG) life of railway axles, a series of interrupted fatigue experiments were conducted on scaled railway axles. Subsequently, the evolutions of fretting wear and fatigue cracks in the press-fitted region were analyzed. Based on the test results, finite element models incorporating fretting wear evolution were established, and the FFCG was investigated using the maximum tangential stress criterion, cyclic resistance curve, and the modified NASGRO equation. The analysis revealed that the fretting wear evolution leads to stress redistribution at the press-fitted region, thereby promoting FFCG. When considering fretting wear evolution, the equivalent stress intensity factor (SIF) range of the crack remains above the threshold value throughout the short crack stage. However, neglecting fretting wear evolution results in the SIF range being below the threshold value for cracks shallower than 0.30 mm. This implies that considering fretting wear evolution enables life prediction throughout the short crack stage. As the crack length increases, the influence of fretting wear evolution on crack growth gradually diminishes. By accounting for fretting wear, a more accurate stress distribution in the press-fitted region can be obtained, leading to a more precise and conservative prediction of crack growth life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海绵宝宝完成签到,获得积分10
刚刚
刚刚
1秒前
niekyang完成签到 ,获得积分10
1秒前
星期八完成签到,获得积分10
1秒前
caiia发布了新的文献求助10
4秒前
无花果应助小慧儿采纳,获得10
4秒前
CipherSage应助海绵宝宝采纳,获得10
5秒前
研友_VZG7GZ应助秀丽的盈采纳,获得10
5秒前
6秒前
天天快乐应助wsj采纳,获得10
6秒前
科目三应助专一的金鱼采纳,获得10
7秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
皮皮琪完成签到,获得积分10
11秒前
kakaa发布了新的文献求助10
11秒前
翻转小花园完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
静静在学呢完成签到,获得积分10
14秒前
15秒前
afterglow完成签到 ,获得积分10
15秒前
小慧儿发布了新的文献求助10
15秒前
SciGPT应助pearlwh1227采纳,获得10
16秒前
热爱学术的蓝色大尾巴鱼完成签到,获得积分10
16秒前
缥缈八宝粥完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
十三完成签到 ,获得积分10
18秒前
18秒前
给我点光环完成签到,获得积分10
19秒前
月yue发布了新的文献求助10
20秒前
Artorias发布了新的文献求助20
20秒前
20秒前
Wang完成签到,获得积分10
20秒前
21秒前
caiia完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648780
求助须知:如何正确求助?哪些是违规求助? 4776351
关于积分的说明 15045465
捐赠科研通 4807646
什么是DOI,文献DOI怎么找? 2571009
邀请新用户注册赠送积分活动 1527687
关于科研通互助平台的介绍 1486590