Hybrid structural graph attention network for POI recommendation

计算机科学 图形 兴趣点 情报检索 嵌入 数据挖掘 推荐系统 构造(python库) 人工智能 数据科学 理论计算机科学 程序设计语言
作者
J. Zhang,Wenming Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123436-123436 被引量:4
标识
DOI:10.1016/j.eswa.2024.123436
摘要

In the era of big data, information overload poses a challenge, complicating user decision-making. Recommendation systems aim to assist in this process. In recent years, research on point-of-interest (POI) recommendations has been gaining momentum with some studies pointing to issues that need to be resolved. Previous studies often used heterogeneous graphs to learn across different entity types, overlooking same-type entity relationships. Certain studies solely extract raw node features from a single source, thus disregarding information diversity, whereas others employ inappropriate methods that fail to preserve the inherent characteristics of the relevant information in the design of raw inputs. The integration of multiple sources of information can introduce a certain amount of noise into the data; however, the approaches used in related research may not be effective in handling this situation. To address these issues, we propose a hybrid structural graph attention network (HS-GAT) for POI recommendation. In this approach, multisource data are first preprocessed and relevant raw features are initialized. Subsequently, heterogeneous graphs are built for user-POI-POI attributes and POI-user-user attributes. These heterogeneous graphs are aggregated using a dual-attention mechanism, to create embedding matrices for users and POIs, which are then used to construct user-user and POI-POI homogeneous graphs. These graph structures are then combined with user and POI embeddings obtained from heterogeneous graphs and fed into a graph attention network (GAT) , which yields the final embedding representations for users and POIs. Finally, recommendations for POIs are made in the form of inner products. A comprehensive performance evaluation of HS-GAT on the Yelp, Boston, Chicago and London datasets demonstrated that the proposed approach outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麋鹿完成签到 ,获得积分10
刚刚
动人的天空完成签到,获得积分20
2秒前
星辰大海应助米恩采纳,获得10
2秒前
GUMC发布了新的文献求助10
2秒前
丘比特应助木子李采纳,获得10
3秒前
爱听歌的寄云完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
谦让友绿完成签到,获得积分10
6秒前
7秒前
7秒前
健壮保温杯完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
梧桐雨210完成签到 ,获得积分10
11秒前
12秒前
魔幻以柳发布了新的文献求助10
12秒前
Mercury2024发布了新的文献求助10
12秒前
木子李发布了新的文献求助10
15秒前
gz发布了新的文献求助10
16秒前
17秒前
菠萝发布了新的文献求助10
19秒前
赘婿应助感动归尘采纳,获得10
20秒前
21秒前
英姑应助Alisa采纳,获得10
22秒前
英姑应助xuanqing采纳,获得10
22秒前
22秒前
义气的断缘完成签到 ,获得积分10
22秒前
22秒前
josephina发布了新的文献求助10
23秒前
gz完成签到,获得积分10
24秒前
什么东西这么好看完成签到,获得积分10
24秒前
木子李完成签到,获得积分10
24秒前
彭于晏应助new采纳,获得10
25秒前
李健应助WANG采纳,获得10
27秒前
29秒前
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329329
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593998
捐赠科研通 2637470
什么是DOI,文献DOI怎么找? 1443549
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656146