已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid structural graph attention network for POI recommendation

计算机科学 图形 兴趣点 情报检索 嵌入 数据挖掘 推荐系统 构造(python库) 人工智能 数据科学 理论计算机科学 程序设计语言
作者
J. Zhang,Wenming Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123436-123436 被引量:10
标识
DOI:10.1016/j.eswa.2024.123436
摘要

In the era of big data, information overload poses a challenge, complicating user decision-making. Recommendation systems aim to assist in this process. In recent years, research on point-of-interest (POI) recommendations has been gaining momentum with some studies pointing to issues that need to be resolved. Previous studies often used heterogeneous graphs to learn across different entity types, overlooking same-type entity relationships. Certain studies solely extract raw node features from a single source, thus disregarding information diversity, whereas others employ inappropriate methods that fail to preserve the inherent characteristics of the relevant information in the design of raw inputs. The integration of multiple sources of information can introduce a certain amount of noise into the data; however, the approaches used in related research may not be effective in handling this situation. To address these issues, we propose a hybrid structural graph attention network (HS-GAT) for POI recommendation. In this approach, multisource data are first preprocessed and relevant raw features are initialized. Subsequently, heterogeneous graphs are built for user-POI-POI attributes and POI-user-user attributes. These heterogeneous graphs are aggregated using a dual-attention mechanism, to create embedding matrices for users and POIs, which are then used to construct user-user and POI-POI homogeneous graphs. These graph structures are then combined with user and POI embeddings obtained from heterogeneous graphs and fed into a graph attention network (GAT) , which yields the final embedding representations for users and POIs. Finally, recommendations for POIs are made in the form of inner products. A comprehensive performance evaluation of HS-GAT on the Yelp, Boston, Chicago and London datasets demonstrated that the proposed approach outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winnie发布了新的文献求助10
1秒前
hcy完成签到,获得积分10
1秒前
三金发布了新的文献求助10
3秒前
4秒前
level完成签到 ,获得积分10
4秒前
肥仔完成签到 ,获得积分10
5秒前
desperter完成签到,获得积分10
6秒前
香鸡滑菇发布了新的文献求助10
6秒前
小蘑菇应助kaiyi采纳,获得10
8秒前
10秒前
小凯完成签到 ,获得积分10
13秒前
13秒前
长生完成签到 ,获得积分10
13秒前
快乐的纸飞机完成签到 ,获得积分10
15秒前
单薄绿竹完成签到,获得积分10
16秒前
张蓓蓓发布了新的文献求助10
17秒前
Facbiu完成签到 ,获得积分20
18秒前
传奇3应助安静沛春采纳,获得10
18秒前
rebron完成签到,获得积分10
19秒前
弈天完成签到 ,获得积分10
19秒前
静静呀完成签到 ,获得积分10
21秒前
忧郁夏兰发布了新的文献求助10
23秒前
勤奋的猫咪完成签到 ,获得积分10
24秒前
安静沛春完成签到,获得积分10
24秒前
NS发布了新的文献求助10
24秒前
思源应助哟嚛采纳,获得10
25秒前
27秒前
顏泰楊完成签到,获得积分10
32秒前
晚意完成签到 ,获得积分10
32秒前
37秒前
Joins_Su完成签到 ,获得积分10
37秒前
BYGYHQ完成签到 ,获得积分10
37秒前
汪鸡毛完成签到 ,获得积分10
38秒前
wanci应助爱听歌笑寒采纳,获得10
39秒前
安静沛春发布了新的文献求助10
41秒前
basil完成签到,获得积分10
41秒前
廖书香完成签到,获得积分10
41秒前
41秒前
43秒前
从容芮完成签到,获得积分0
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934895
求助须知:如何正确求助?哪些是违规求助? 4202593
关于积分的说明 13057993
捐赠科研通 3977141
什么是DOI,文献DOI怎么找? 2179362
邀请新用户注册赠送积分活动 1195516
关于科研通互助平台的介绍 1106915