Hybrid structural graph attention network for POI recommendation

计算机科学 图形 兴趣点 情报检索 嵌入 数据挖掘 推荐系统 构造(python库) 人工智能 数据科学 理论计算机科学 程序设计语言
作者
J. Zhang,Wenming Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123436-123436 被引量:4
标识
DOI:10.1016/j.eswa.2024.123436
摘要

In the era of big data, information overload poses a challenge, complicating user decision-making. Recommendation systems aim to assist in this process. In recent years, research on point-of-interest (POI) recommendations has been gaining momentum with some studies pointing to issues that need to be resolved. Previous studies often used heterogeneous graphs to learn across different entity types, overlooking same-type entity relationships. Certain studies solely extract raw node features from a single source, thus disregarding information diversity, whereas others employ inappropriate methods that fail to preserve the inherent characteristics of the relevant information in the design of raw inputs. The integration of multiple sources of information can introduce a certain amount of noise into the data; however, the approaches used in related research may not be effective in handling this situation. To address these issues, we propose a hybrid structural graph attention network (HS-GAT) for POI recommendation. In this approach, multisource data are first preprocessed and relevant raw features are initialized. Subsequently, heterogeneous graphs are built for user-POI-POI attributes and POI-user-user attributes. These heterogeneous graphs are aggregated using a dual-attention mechanism, to create embedding matrices for users and POIs, which are then used to construct user-user and POI-POI homogeneous graphs. These graph structures are then combined with user and POI embeddings obtained from heterogeneous graphs and fed into a graph attention network (GAT) , which yields the final embedding representations for users and POIs. Finally, recommendations for POIs are made in the form of inner products. A comprehensive performance evaluation of HS-GAT on the Yelp, Boston, Chicago and London datasets demonstrated that the proposed approach outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tigher完成签到,获得积分10
3秒前
jinshijie完成签到 ,获得积分10
3秒前
coollittlemouse完成签到,获得积分10
3秒前
4秒前
5秒前
星辰大海应助Marco_hxkq采纳,获得10
6秒前
6秒前
7秒前
哇咔咔完成签到,获得积分10
7秒前
若鱼关注了科研通微信公众号
7秒前
淡然觅海完成签到 ,获得积分10
8秒前
2024220513发布了新的文献求助10
9秒前
玩命的谷槐完成签到,获得积分10
12秒前
善学以致用应助陈晓真采纳,获得10
14秒前
在水一方应助liuguohua126采纳,获得10
14秒前
扶余山本完成签到,获得积分10
15秒前
Hermione完成签到,获得积分10
15秒前
大海完成签到,获得积分10
16秒前
16秒前
17秒前
扶余山本发布了新的文献求助10
17秒前
18秒前
nobody完成签到,获得积分10
19秒前
wanci应助深情的雁露采纳,获得10
20秒前
xiaoyan完成签到,获得积分20
20秒前
20秒前
22秒前
23秒前
23秒前
23秒前
头发乱了发布了新的文献求助10
26秒前
李荷月完成签到,获得积分10
27秒前
27秒前
27秒前
风趣翠霜应助哈哈采纳,获得20
27秒前
千空发布了新的文献求助10
29秒前
29秒前
sunflowers发布了新的文献求助10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089