Hybrid structural graph attention network for POI recommendation

计算机科学 图形 兴趣点 情报检索 嵌入 数据挖掘 推荐系统 构造(python库) 人工智能 数据科学 理论计算机科学 程序设计语言
作者
J. Zhang,Wenming Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123436-123436 被引量:10
标识
DOI:10.1016/j.eswa.2024.123436
摘要

In the era of big data, information overload poses a challenge, complicating user decision-making. Recommendation systems aim to assist in this process. In recent years, research on point-of-interest (POI) recommendations has been gaining momentum with some studies pointing to issues that need to be resolved. Previous studies often used heterogeneous graphs to learn across different entity types, overlooking same-type entity relationships. Certain studies solely extract raw node features from a single source, thus disregarding information diversity, whereas others employ inappropriate methods that fail to preserve the inherent characteristics of the relevant information in the design of raw inputs. The integration of multiple sources of information can introduce a certain amount of noise into the data; however, the approaches used in related research may not be effective in handling this situation. To address these issues, we propose a hybrid structural graph attention network (HS-GAT) for POI recommendation. In this approach, multisource data are first preprocessed and relevant raw features are initialized. Subsequently, heterogeneous graphs are built for user-POI-POI attributes and POI-user-user attributes. These heterogeneous graphs are aggregated using a dual-attention mechanism, to create embedding matrices for users and POIs, which are then used to construct user-user and POI-POI homogeneous graphs. These graph structures are then combined with user and POI embeddings obtained from heterogeneous graphs and fed into a graph attention network (GAT) , which yields the final embedding representations for users and POIs. Finally, recommendations for POIs are made in the form of inner products. A comprehensive performance evaluation of HS-GAT on the Yelp, Boston, Chicago and London datasets demonstrated that the proposed approach outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Canyon完成签到,获得积分10
1秒前
刘l完成签到,获得积分10
1秒前
9699完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
破碎时间完成签到 ,获得积分10
3秒前
3秒前
3秒前
orixero应助忐忑的不可采纳,获得10
4秒前
科研通AI2S应助zhouyan采纳,获得10
4秒前
5秒前
蔡勇强发布了新的文献求助10
5秒前
小虫虫完成签到,获得积分10
5秒前
饼饼大王完成签到,获得积分10
5秒前
13013523252完成签到,获得积分10
5秒前
7秒前
hy发布了新的文献求助10
7秒前
科研通AI6应助tph采纳,获得10
8秒前
jesmblaq完成签到,获得积分10
9秒前
文静的夜阑完成签到,获得积分20
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
苹果有毒发布了新的文献求助10
10秒前
小石头完成签到,获得积分10
12秒前
13秒前
13013523252发布了新的文献求助10
13秒前
Jasper应助Walden采纳,获得10
13秒前
目土土完成签到 ,获得积分10
16秒前
海盐气泡水完成签到,获得积分10
17秒前
18秒前
十二十三完成签到 ,获得积分10
18秒前
19秒前
火星完成签到,获得积分20
19秒前
19秒前
21秒前
蓝天发布了新的文献求助10
24秒前
柔弱白羊发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812