Hybrid structural graph attention network for POI recommendation

计算机科学 图形 兴趣点 情报检索 嵌入 数据挖掘 推荐系统 构造(python库) 人工智能 数据科学 理论计算机科学 程序设计语言
作者
J. Zhang,Wenming Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123436-123436 被引量:10
标识
DOI:10.1016/j.eswa.2024.123436
摘要

In the era of big data, information overload poses a challenge, complicating user decision-making. Recommendation systems aim to assist in this process. In recent years, research on point-of-interest (POI) recommendations has been gaining momentum with some studies pointing to issues that need to be resolved. Previous studies often used heterogeneous graphs to learn across different entity types, overlooking same-type entity relationships. Certain studies solely extract raw node features from a single source, thus disregarding information diversity, whereas others employ inappropriate methods that fail to preserve the inherent characteristics of the relevant information in the design of raw inputs. The integration of multiple sources of information can introduce a certain amount of noise into the data; however, the approaches used in related research may not be effective in handling this situation. To address these issues, we propose a hybrid structural graph attention network (HS-GAT) for POI recommendation. In this approach, multisource data are first preprocessed and relevant raw features are initialized. Subsequently, heterogeneous graphs are built for user-POI-POI attributes and POI-user-user attributes. These heterogeneous graphs are aggregated using a dual-attention mechanism, to create embedding matrices for users and POIs, which are then used to construct user-user and POI-POI homogeneous graphs. These graph structures are then combined with user and POI embeddings obtained from heterogeneous graphs and fed into a graph attention network (GAT) , which yields the final embedding representations for users and POIs. Finally, recommendations for POIs are made in the form of inner products. A comprehensive performance evaluation of HS-GAT on the Yelp, Boston, Chicago and London datasets demonstrated that the proposed approach outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助秀丽的小懒虫采纳,获得10
刚刚
hqlran完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
WX完成签到,获得积分10
2秒前
3秒前
未来完成签到,获得积分20
3秒前
沉静傻姑发布了新的文献求助10
4秒前
4秒前
5秒前
hoongyan完成签到 ,获得积分10
5秒前
超级的幻然完成签到,获得积分10
5秒前
mmol完成签到,获得积分10
6秒前
gdh发布了新的文献求助10
6秒前
哈哈完成签到,获得积分10
6秒前
Jasper应助未来采纳,获得10
6秒前
7秒前
蓝色雪狐完成签到,获得积分20
7秒前
7秒前
淑儿哥哥发布了新的文献求助10
8秒前
cch发布了新的文献求助30
8秒前
9秒前
孙元应助脆啵啵马克宝采纳,获得10
9秒前
9秒前
甜橙完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
考博圣体发布了新的文献求助10
11秒前
12秒前
12秒前
Cindy发布了新的文献求助10
12秒前
14秒前
14秒前
hanatae发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
桃子完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186