High Energy Density and Long Cycle Life Achieved in Mo-Doped Lini0.5mn1.5o4 Cathode from Dual Enhanced Electronic and Ionic Conductivities

阴极 离子键合 兴奋剂 材料科学 能量密度 离子 对偶(语法数字) 工程物理 凝聚态物理 化学 物理化学 光电子学 物理 艺术 文学类 有机化学
作者
Zhen Zhang,Chengkang Chang,Jie-Ning Zheng
标识
DOI:10.2139/ssrn.4720495
摘要

Owing to the inherently low capacity of the LiNi0.5Mn1.5O4 (LNMO) cathode material, its appeal for high-energy applications has progressively diminished. In this study, we extended the operating voltage range to 2-5 V and enhanced the electronic and ionic conductivities through Mo doping, ultimately leading to a significant improvement in both capacity and cycle life. Among the investigated samples, LiNi0.5Mn1.49Mo0.01O4 demonstrated superior electrochemical performance, evidenced by an initial discharge specific capacity of 226.6 mAh g–1 and an energy density of 796 Wh kg–1 at a 0.1C rate. Following 100 charge-discharge cycles, the discharge specific capacity diminished from 209.9 mAh g–1 to 178.8 mAh g–1, with a capacity retention of 85.2%. The exceptional cycling performance can be primarily ascribed to the improved electronic structure, which arises from a narrowed bandgap and an increased number of free electrons near the Fermi level after Mo doping, thereby boosting electronic conductivity. Furthermore, Mo doping results in an elongation of the Li-O bond length, consequently expanding the volume of the LiO4 tetrahedra. This volumetric expansion contributes to an increase in the Li+ diffusion coefficient (DLi+) from 4.726×10–13 cm2 S–1 to 2.112×10–12 cm2 S–1, indicative of augmented Li+ ion conductivity and an ameliorated rate capability of the LNMO cathode material. At a 2C rate, the Mo-doped sample sustained a discharge capacity of 166.6 mAh g–1, in stark contrast to the mere 123 mAh g–1 exhibited by the undoped sample.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜乐松完成签到 ,获得积分10
3秒前
袁雪蓓完成签到 ,获得积分10
5秒前
Hello应助Wang采纳,获得10
10秒前
Loscipy完成签到,获得积分10
13秒前
Micahaeler完成签到 ,获得积分10
14秒前
白菜完成签到 ,获得积分10
15秒前
务实青筠完成签到 ,获得积分10
18秒前
nicolaslcq完成签到,获得积分10
19秒前
zhouyelly完成签到,获得积分10
24秒前
研友Bn完成签到 ,获得积分10
33秒前
lizh187完成签到 ,获得积分10
36秒前
杨冲完成签到 ,获得积分10
42秒前
ken131完成签到 ,获得积分10
47秒前
萧布完成签到,获得积分10
50秒前
小龙发布了新的文献求助10
52秒前
张尧摇摇摇完成签到 ,获得积分10
53秒前
微生完成签到 ,获得积分10
59秒前
1分钟前
小龙完成签到,获得积分10
1分钟前
1分钟前
呜呼啦呼完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
楠瓜发布了新的文献求助10
1分钟前
Chloe完成签到 ,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
洒家完成签到 ,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
古月丰色完成签到 ,获得积分10
1分钟前
暮晓见完成签到 ,获得积分10
1分钟前
小马甲应助山楂采纳,获得10
1分钟前
洁净的静芙完成签到 ,获得积分10
1分钟前
玲家傻妞完成签到 ,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
djdh完成签到 ,获得积分10
1分钟前
psy完成签到,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
tsy完成签到 ,获得积分10
1分钟前
内向东蒽完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
2分钟前
nt1119完成签到 ,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826798
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565