A pathway-based computational framework for identification of a new modal of multi-omics biomarkers and its application in esophageal cancer

可解释性 生物标志物发现 计算机科学 机器学习 分类器(UML) 人工智能 计算生物学 生物信息学 蛋白质组学 基因 生物 生物化学
作者
Qi Zhou,Weicai Ye,Xiaolan Yu,Yun‐Juan Bao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:247: 108077-108077 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108077
摘要

The pathway-based strategy has been recently proposed for identifying biomarkers with the advantages of higher biological interpretability and cross-data robustness than the conventional gene-based strategy. However, its utility in clinical applications has been limited due to the high computational complexity and ill-defined performance.The current study presents a machine learning-based computational framework using multi-omics data for identifying a new modal of biomarkers, called pathway-derived core biomarkers, which have the advantages of both gene-based and pathway-based biomarkers.Machine-learning methods and gene-pathway network were integrated to select the pathway-derived core biomarkers. Multiple machine-learning algorithms were used to construct and validate the diagnostic models of the biomarkers based on more than 1400 multi-omics clinical samples of esophageal squamous cell carcinoma (ESCC).The results showed that the classifier models based on the new modal biomarkers achieved superior performance in the training datasets with an average AUC/accuracy of 0.98/0.95 and 0.89/0.81 for mRNAs and miRNA, respectively, higher than the currently known classifier models based on the conventional gene-based strategy and pathway-based strategy. In the testing cohorts, the AUC/accuracy increased by 6.1 %/7.3 % than the models based on the native gene-based biomarkers. The improved performance was further confirmed in independent validation cohorts. Specifically, the sensitivity/specificity increased by ∼3 % and the variance significantly decreased by ∼69 % compared with that of the native gene-based biomarkers. Importantly, the pathway-derived core biomarkers also recovered 45 % more previously reported biomarkers than the gene-based biomarkers and are more functionally relevant to the ESCC etiology (involved in 14 versus 7 pathways related with ESCC or other cancer), highlighting the cross-data robustness of this new modal of biomarkers via enhanced functional relevance.The results demonstrated that the new modal of biomarkers not only have improved predicting performance and robustness, but also exhibit higher functional interpretability thus leading to the potential application in cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
5秒前
满脸痘痘发布了新的文献求助10
6秒前
菠萝完成签到 ,获得积分10
7秒前
wwwwwwz_z发布了新的文献求助10
7秒前
一期一会完成签到,获得积分10
7秒前
城南花已开完成签到,获得积分10
7秒前
小蘑菇应助Vincent采纳,获得10
8秒前
8秒前
10秒前
10秒前
赵思瑞发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
魁梧的盼望完成签到,获得积分10
15秒前
科研通AI2S应助jacob258采纳,获得10
15秒前
16秒前
17秒前
lulu发布了新的文献求助10
17秒前
好英俊的马铃薯!完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
xu应助科研通管家采纳,获得200
19秒前
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241564
求助须知:如何正确求助?哪些是违规求助? 2886037
关于积分的说明 8241488
捐赠科研通 2554561
什么是DOI,文献DOI怎么找? 1382645
科研通“疑难数据库(出版商)”最低求助积分说明 649613
邀请新用户注册赠送积分活动 625279