Predicting pathologic response to neoadjuvant chemotherapy in locally advanced gastric cancer: The establishment of a spectral CT-based nomogram from prospective datasets

列线图 接收机工作特性 医学 逻辑回归 危险系数 癌症 肿瘤科 放射科 新辅助治疗 比例危险模型 内科学 置信区间 核医学 乳腺癌
作者
Jing Li,Xuejun Chen,Shuning Xu,Yi Wang,Fei Ma,Yue Wu,Jinrong Qu
出处
期刊:Ejso [Elsevier BV]
卷期号:50 (4): 108020-108020 被引量:2
标识
DOI:10.1016/j.ejso.2024.108020
摘要

Abstract

Background

To establish a spectral CT-based nomogram for predicting early neoadjuvant chemotherapy (NAC) response for locally advanced gastric cancer (LAGC).

Methods

This study prospectively recruited 222 cases (177 male and 45 female patients, 9.59 ± 9.54 years) receiving NAC and radical gastrectomy. Triple enhanced spectral CT scans were performed before NAC initiation. According to post-operative tumor regression grade (TRG), patients were classified into responders (TRG = 0 + 1) or non-responders (TRG = 2 + 3), and split into a primary (156) and validation (66) dataset at 7:3 ratio chronologically. We compared clinicopathological data, follow-up information, iodine concentration (IC), normalized ICs (nICs) in arterial/venous/delayed phases (AP/VP/DP) between responders and non-responders. Independent risk factors of response were screened by multivariable logistic regression and adopted for model construction. Model was visualized by nomograms and its capability was determined through receiver operating characteristic (ROC) curves. Log-rank survival analysis was conducted to explore associations between TRG, nomogram and patients' survival.

Results

This work identified Borrmann classification, ICDP, and nICDP were independent risk factors of response outcomes. A spectral CT-based nomogram was built accordingly and achieved an area under the curve (AUC) of 0.797 (0.692–0.879) and 0.741(0.661–0.811) for the primary and validation dataset, respectively, higher than AUC of individual parameters alone. The nomogram was related to disease-free survival in the validation dataset (Hazard ratio (HR): 5.19 [1.18–12.93], P = 0.02).

Conclusions

The spectral CT-based nomogram provides an efficient tool for predicting the pathologic response outcomes of GC after NAC and disease-free survival risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯哦哦哦完成签到 ,获得积分10
8秒前
14秒前
凉面完成签到 ,获得积分10
17秒前
fkdbdy发布了新的文献求助10
19秒前
科研通AI2S应助jinx采纳,获得10
20秒前
午后狂睡完成签到 ,获得积分10
21秒前
28秒前
液晶屏99完成签到,获得积分10
31秒前
35秒前
ShuY发布了新的文献求助10
38秒前
韧迹完成签到 ,获得积分0
48秒前
ShuY完成签到,获得积分10
1分钟前
mojojo完成签到 ,获得积分10
1分钟前
1分钟前
江三村完成签到 ,获得积分10
1分钟前
青山完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
wanci应助抗体药物偶联采纳,获得10
1分钟前
桐桐应助抗体药物偶联采纳,获得10
1分钟前
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
852应助善良语雪采纳,获得10
1分钟前
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
2分钟前
股价发布了新的文献求助30
2分钟前
善良语雪发布了新的文献求助10
2分钟前
爆米花应助股价采纳,获得10
2分钟前
科研通AI5应助zhscu采纳,获得10
2分钟前
2分钟前
chenxi完成签到 ,获得积分10
2分钟前
善良语雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
斯文的难破完成签到 ,获得积分10
2分钟前
zhscu发布了新的文献求助10
2分钟前
凯撒的归凯撒完成签到 ,获得积分10
2分钟前
袁翰将军完成签到 ,获得积分10
2分钟前
星辰完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155787
捐赠科研通 3245462
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247