普鲁士蓝
过渡金属
氰化物
阴极
材料科学
结晶学
化学
无机化学
电化学
物理化学
电极
催化作用
生物化学
作者
Ju‐Hyeon Lee,Jin-Gyu Bae,Min Sung Kim,Jeong Yeon Heo,Hyeon Jeong Lee,Ji Hoon Lee
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-01-12
卷期号:18 (3): 1995-2005
被引量:5
标识
DOI:10.1021/acsnano.3c08271
摘要
Transition metal (TM) based Prussian whites, comprising a cyanide anion ((C≡N)−) and TM cations in an alternative manner, have been widely adopted as cathode materials for rechargeable batteries. Prussian whites are characterized by the TM electronic states that exclusively adopt low spin (LS) toward the C atom and high spin (HS) toward the N atom through the hybridized covalent bonding in the TM─C≡N─TM unit with the average oxidation states of the TM ions being 2+, considerably affecting the phase transition behavior upon the release and storage of carrier ions; however, there have been only a few studies on their associated features. Herein, Prussian whites with different HS TM ions were synthesized via coprecipitation and the phase transition behavior controlled by the π electron interaction between the cyanide anions and TM ions during battery operations was investigated. In situ X-ray characterizations reveal that the combined effect of π backdonation in the LS Fe–C unit and π donation in the HS TM–N unit effectively controls the bond length of the TM─C≡N─TM building unit, thus markedly influencing the lattice volume of a series of Prussian white cathodes during the charge/discharge process. This study presents a comprehensive understanding of the structure–property relationship of the Prussian white cathodes involving π electron interactions during battery operations.
科研通智能强力驱动
Strongly Powered by AbleSci AI