The dawn of intelligent technologies in tea industry

可追溯性 新兴技术 质量(理念) 供应链 产品(数学) 风险分析(工程) 计算机科学 业务 人工智能 营销 哲学 几何学 数学 软件工程 认识论
作者
Yang Wei,Yongqi Wen,Xiaolin Huang,Peihua Ma,Li Wang,Yi Pan,Yangjun Lv,Hongxin Wang,Liang Zhang,Kunbo Wang,Xiufang Yang,Xinlin Wei
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:144: 104337-104337 被引量:17
标识
DOI:10.1016/j.tifs.2024.104337
摘要

Tea is a globally significant agricultural product, renowned for its economic and cultural value. The process of tea cultivation and production involves tea plantation management, disease control, harvesting, processing, sorting and safety and quality assessment. The quality of tea can be affected by many factors, involving variety, environment, picking and processing. Nevertheless, quality assessment of tea often relies on manual experience and specialized knowledge, which is accompanied by subjectivity and inconsistency. Furthermore, the tea production process also faces several challenges, such as pest and disease prediction and detection, supply chain monitoring and traceability. This review introduces intelligent technologies applied in tea industry, including computer vision, machine learning, spectroscopic techniques, artificial sensors, big data, internet of things, and blockchain. We summarize the progress of the application of intelligent technologies in tea industry, analyze the existing challenges and gaps, and suggest future research trends. The review is expected to provide novel insights into the application of intelligent technologies in tea industry to build a transparent, traceable, and sustainable tea industry chain. Intelligent technologies have a broad application prospect in tea industry to improve product quality, efficiency, transparency, and traceability. Particularly, combination of intelligent technologies may result in better performance. Open datasets are necessary for storage of huge amount of information. Standardization of intelligent technologies establishes a solid foundation for development of sustainable tea industry. Furthermore, transition to portable devices is the most responsive direction to tea market demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
和谐的如柏完成签到,获得积分10
刚刚
Mm发布了新的文献求助10
1秒前
Ortho Wang发布了新的文献求助10
1秒前
天人合一完成签到,获得积分0
1秒前
传奇3应助结实擎苍采纳,获得10
1秒前
爆米花应助舒萼采纳,获得10
3秒前
踏实奇异果完成签到,获得积分10
3秒前
柠檬柚子晴完成签到,获得积分10
4秒前
Jocd完成签到,获得积分10
6秒前
wxy完成签到 ,获得积分10
6秒前
寒冷丹雪完成签到,获得积分10
6秒前
香蕉觅云应助Brian采纳,获得10
6秒前
简单的易云完成签到,获得积分10
6秒前
思源应助张尧摇摇摇采纳,获得10
6秒前
一禅完成签到 ,获得积分10
8秒前
和谐的果汁完成签到 ,获得积分10
9秒前
9秒前
迷你的夜天完成签到 ,获得积分10
10秒前
ann完成签到,获得积分20
11秒前
爱吃冬瓜完成签到,获得积分10
12秒前
失眠迎蕾完成签到,获得积分10
12秒前
SUN关注了科研通微信公众号
14秒前
鉨汏闫完成签到,获得积分10
14秒前
啊啊啊啊啊完成签到,获得积分10
14秒前
文艺以莲完成签到,获得积分10
14秒前
蔫蔫完成签到 ,获得积分10
15秒前
小羊驼肖恩完成签到,获得积分10
15秒前
16秒前
轻松元绿完成签到 ,获得积分10
16秒前
16秒前
勤奋流沙完成签到 ,获得积分10
16秒前
17秒前
六一发布了新的文献求助30
18秒前
舒萼发布了新的文献求助10
20秒前
20秒前
Brian发布了新的文献求助10
20秒前
善学以致用应助hhhh采纳,获得10
20秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288730
求助须知:如何正确求助?哪些是违规求助? 2926000
关于积分的说明 8424638
捐赠科研通 2597039
什么是DOI,文献DOI怎么找? 1416964
科研通“疑难数据库(出版商)”最低求助积分说明 659534
邀请新用户注册赠送积分活动 641914