Molecular Engineering and Confinement Effect Powered Ultrabright Nanoparticles for Improving Sensitivity of Lateral Flow Immunoassay

材料科学 纳米技术 纳米颗粒 胶体金 荧光 物理 量子力学
作者
Gan Zhang,Tingting Liu,Huadong Cai,Yan Hu,Zhifang Zhang,Meifeng Huang,Juan Peng,Weihua Lai
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (3): 2346-2354 被引量:13
标识
DOI:10.1021/acsnano.3c10427
摘要

The application of traditional lateral flow immunoassay (LFIA)-based gold nanoparticles (AuNPs) to measure traces of target chemicals is usually challenging. In this study, we developed an integrated strategy based on molecular engineering and the spatial confinement of nanoparticles (NPs) to obtain ultrahigh quantum yields (QYs) of aggregation-induced emission (AIE) fluorescence NPs and employed them for the highly sensitive detection of T-2 toxin on the LFIA platform. Tetraethyl-4,4′,4″,4‴-(ethene-1,1,2,2-tetrayl)tetrabenzoate (TCPEME), an AIE luminogen, was designed using molecular engineering to lower the energy gap, achieving higher QYs (26.26%) than previous AIEgens (13.02%). Subsequently, TCPEME-doped fluorescence NPs (TFNPs) achieved ultrahigh QYs, up to 84.55%, which were generated from the strong restriction of the NP state, efficiently suppressing nonradiative relaxation channels verified by ultrafast electron dynamics. On the LFIA platform, the sensitivity of the designed TFNP-based LFIA (TFNP–LFIA) was 10.4-fold and 4.3-fold more sensitive than that of the AuNP–LFIA and TPENP–LFIA for detecting the T-2 toxin, respectively. In addition, TFNP–LFIA was used for detecting T-2 toxin in samples and showed satisfactory recoveries (79.5 to 122.0%) with CV (1.49 to 11.75%), which implied excellent application potential for TFNP–LFIA. Overall, dual improvement of the molecule in fluorescence performance originating from the molecular engineering and spatial confinement of NPs could be an efficient tool for promoting the development of high-performance reporters in LFIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shatang完成签到,获得积分10
刚刚
1秒前
Owen应助一天八杯水采纳,获得10
1秒前
所所应助静静子采纳,获得10
2秒前
所所应助jy采纳,获得10
2秒前
hkxfg完成签到,获得积分10
2秒前
duo完成签到,获得积分10
3秒前
4秒前
spurs17发布了新的文献求助10
4秒前
4秒前
善学以致用应助BaekHyun采纳,获得10
4秒前
5秒前
5秒前
nanhe698完成签到,获得积分10
6秒前
6秒前
李本来完成签到,获得积分20
7秒前
看看发布了新的文献求助10
7秒前
ZZY完成签到,获得积分10
7秒前
DQY完成签到,获得积分10
8秒前
BONBON完成签到,获得积分20
8秒前
动听导师发布了新的文献求助10
9秒前
9秒前
季忆完成签到,获得积分10
9秒前
小周发布了新的文献求助10
10秒前
smile发布了新的文献求助10
10秒前
11秒前
Lore完成签到 ,获得积分10
11秒前
11秒前
jiang完成签到,获得积分10
12秒前
12秒前
无奈的酒窝关注了科研通微信公众号
13秒前
毛毛完成签到,获得积分10
13秒前
正在完成签到,获得积分10
14秒前
14秒前
充电宝应助JR采纳,获得10
15秒前
15秒前
cc完成签到,获得积分20
15秒前
李爱国应助111采纳,获得10
15秒前
jy发布了新的文献求助10
15秒前
好好完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808