Accelerating Unsupervised Federated Graph Neural Networks via Semi-asynchronous Communication

异步通信 计算机科学 图形 人工神经网络 分布式计算 人工智能 理论计算机科学 机器学习 计算机网络
作者
Yuanming Liao,Duanji Wu,Pengyu Lin,Kun Guo
出处
期刊:Communications in computer and information science 卷期号:: 378-392
标识
DOI:10.1007/978-981-99-9637-7_28
摘要

Graph neural networks have shown excellent performance in many fields owing to their powerful processing ability of graph data. In recent years, federated graph neural network has become a reasonable solution due to the enactment of privacy-related regulations. However, frequent communication between the coordinator and participants in federated graph neural network results in longer model training time and consumes many communication resources. To address this challenge, in this paper, we propose a novel semi-asynchronous federated graph learning communication protocol that simultaneously alleviates the negative impact of stragglers(slow participants) and accelerate the training process in the unsupervised federated graph neural network scenario. First, the weighted enforced synchronization strategy is intended to preserve the information carried by stragglers while preventing their stale models from harming the global model update. Second, the adaptive local update strategy is developed to make the local model of the participant with poor computing performance as close as possible to the global model. Experiments combine federated learning with graph contrastive learning. The results demonstrate that our proposed protocol outperforms the existing protocols in real-world networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
1秒前
sissiarno应助如寄采纳,获得30
1秒前
甜美的芷完成签到,获得积分10
2秒前
宁ning完成签到,获得积分10
3秒前
PCEEN完成签到,获得积分10
3秒前
dachengzi完成签到,获得积分10
5秒前
完美采梦完成签到 ,获得积分10
5秒前
7秒前
jssssssss发布了新的文献求助10
7秒前
Ava应助晴时有风采纳,获得10
8秒前
甜美的芷发布了新的文献求助10
10秒前
失眠巧凡关注了科研通微信公众号
11秒前
科目三应助阿欢采纳,获得10
12秒前
未解的波发布了新的文献求助10
13秒前
林溪完成签到,获得积分10
13秒前
15秒前
小曲完成签到,获得积分10
16秒前
18秒前
18秒前
zhan发布了新的文献求助20
18秒前
24秒前
24秒前
bkagyin应助未解的波采纳,获得10
26秒前
小曲发布了新的文献求助20
28秒前
失眠巧凡发布了新的文献求助10
28秒前
科目三应助谷粱靖采纳,获得10
28秒前
搜集达人应助灰色白面鸮采纳,获得10
30秒前
传奇3应助灰色白面鸮采纳,获得10
30秒前
斯文败类应助灰色白面鸮采纳,获得10
30秒前
30秒前
30秒前
jssssssss发布了新的文献求助10
30秒前
lsy发布了新的文献求助10
33秒前
Hello应助qqq采纳,获得10
34秒前
34秒前
34秒前
王汐完成签到,获得积分10
38秒前
南烟发布了新的文献求助10
38秒前
张文博完成签到,获得积分10
39秒前
棒棒糖完成签到 ,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055373
求助须知:如何正确求助?哪些是违规求助? 2712154
关于积分的说明 7429854
捐赠科研通 2356935
什么是DOI,文献DOI怎么找? 1248350
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093