Accelerating Unsupervised Federated Graph Neural Networks via Semi-asynchronous Communication

异步通信 计算机科学 图形 人工神经网络 分布式计算 人工智能 理论计算机科学 机器学习 计算机网络
作者
Yuanming Liao,Duanji Wu,Pengyu Lin,Kun Guo
出处
期刊:Communications in computer and information science 卷期号:: 378-392
标识
DOI:10.1007/978-981-99-9637-7_28
摘要

Graph neural networks have shown excellent performance in many fields owing to their powerful processing ability of graph data. In recent years, federated graph neural network has become a reasonable solution due to the enactment of privacy-related regulations. However, frequent communication between the coordinator and participants in federated graph neural network results in longer model training time and consumes many communication resources. To address this challenge, in this paper, we propose a novel semi-asynchronous federated graph learning communication protocol that simultaneously alleviates the negative impact of stragglers(slow participants) and accelerate the training process in the unsupervised federated graph neural network scenario. First, the weighted enforced synchronization strategy is intended to preserve the information carried by stragglers while preventing their stale models from harming the global model update. Second, the adaptive local update strategy is developed to make the local model of the participant with poor computing performance as close as possible to the global model. Experiments combine federated learning with graph contrastive learning. The results demonstrate that our proposed protocol outperforms the existing protocols in real-world networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liuwenwen完成签到,获得积分10
1秒前
2秒前
科目三应助派大星采纳,获得30
4秒前
5秒前
可爱的函函应助Rita采纳,获得10
5秒前
5秒前
6秒前
yangcong发布了新的文献求助10
6秒前
yydragen应助学术渣渣采纳,获得30
11秒前
Muhammad发布了新的文献求助10
12秒前
yatou327完成签到,获得积分10
12秒前
14秒前
miao发布了新的文献求助10
14秒前
苏苏发布了新的文献求助10
15秒前
汉堡包应助学术混子采纳,获得10
17秒前
shimly0101xx发布了新的文献求助10
19秒前
阿珊完成签到,获得积分10
20秒前
Ki_Ayasato发布了新的文献求助150
21秒前
大模型应助北夏采纳,获得10
22秒前
cuber完成签到 ,获得积分10
23秒前
23秒前
XXJ发布了新的文献求助10
24秒前
科目三应助桀桀桀采纳,获得10
24秒前
shimly0101xx完成签到,获得积分10
26秒前
26秒前
Rondab应助好滴捏采纳,获得10
26秒前
泡泡鱼完成签到 ,获得积分10
27秒前
28秒前
29秒前
儒雅涵易完成签到 ,获得积分10
29秒前
30秒前
幽默的绣连完成签到,获得积分20
31秒前
Muhammad发布了新的文献求助10
32秒前
lzx发布了新的文献求助10
32秒前
congenialboy发布了新的文献求助10
32秒前
爆米花应助XXJ采纳,获得10
33秒前
张雯思发布了新的文献求助10
34秒前
34秒前
Lucas应助精明怜南采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176