Modelling motorized and non-motorized vehicle conflicts using multiagent inverse reinforcement learning approach

强化学习 计算机科学 人工智能 钢筋 工程类 结构工程
作者
Yan Liu,Rushdi Alsaleh,Tarek Sayed
出处
期刊:Transportmetrica B-Transport Dynamics [Informa]
卷期号:12 (1) 被引量:2
标识
DOI:10.1080/21680566.2024.2314762
摘要

Microsimulation models are effective for analysing road users' interaction behaviour and assessing different facilities' performance. However, only a few studies have developed simulation models for studying motorized and non-motorized vehicles conflicts. This is likely due to mixed traffic's complexity and heterogeneity and the difficulty in accurately capturing road users' avoidance maneuver. This study aims to adopt a multiagent simulation model to replicate road users' microscopic behaviour and collision avoidance mechanisms in traffic conflict scenarios. Road users' reward functions are recovered by the multiagent inverse reinforcement learning approach. The multiagent Actor-Critic deep learning algorithm is used to predict road users' evasive action and assess their optimal policies. The findings demonstrate that the multiagent simulation model provides highly accurate predictions of road users' trajectories and collision avoidance strategies. Furthermore, the results demonstrate a strong correlation between the predicted traffic conflict indicator from the simulated trajectories and that from the actual trajectories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无我完成签到,获得积分10
1秒前
ZKK完成签到,获得积分10
2秒前
iNk应助无辜不言采纳,获得20
2秒前
wanci应助新小pi采纳,获得10
3秒前
3秒前
3秒前
li应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
drtianyunhong完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得50
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
似是而非应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
聪聪great完成签到,获得积分10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
萧水白应助科研通管家采纳,获得10
6秒前
愉快问枫应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
香蕉觅云应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267169
求助须知:如何正确求助?哪些是违规求助? 2906715
关于积分的说明 8339323
捐赠科研通 2577335
什么是DOI,文献DOI怎么找? 1400887
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633887