Enhancing Efficiency in Alkaline Electrolysis Cells: Optimizing Flow Channels through Multiphase Computational Fluid Dynamics Modeling

阳极 机械 流体力学 电解 阴极 流量(数学) 材料科学 电解质 化学 工艺工程 模拟 计算机科学 电极 工程类 物理 物理化学
作者
Longchang Xue,Shuaishuai Song,Wei Chen,Bin Liu,Xin Wang
出处
期刊:Energies [MDPI AG]
卷期号:17 (2): 448-448
标识
DOI:10.3390/en17020448
摘要

The efficient operation of alkaline water electrolysis cells hinges upon understanding and optimizing gas–liquid flow dynamics. Achieving uniform flow patterns is crucial to minimize stagnant regions, prevent gas bubble accumulation, and establish optimal conditions for electrochemical reactions. This study employed a comprehensive, three-dimensional computational fluid dynamics Euler–Euler multiphase model, based on a geometric representation of an alkaline electrolytic cell. The electrochemical model, responsible for producing hydrogen and oxygen at the cathode and anode during water electrolysis, is integrated into the flow model by introducing mass source terms within the user-defined function. The membrane positioned between the flow channels employs a porous medium model to selectively permit specific components to pass through while restricting others. To validate the accuracy of the model, comparisons were made with measured data available in the literature. We obtained an optimization design method for the channel structure; the three-inlet model demonstrated improved speed and temperature uniformity, with a 22% reduction in the hydrogen concentration at the outlet compared to the single-inlet model. This resulted in the optimization of gas emission efficiency. As the radius of the spherical convex structure increased, the influence of the spherical convex structure on the electrolyte intensified, resulting in enhanced flow uniformity within the flow field. This study may help provide recommendations for designing and optimizing flow channels to enhance the efficiency of alkaline water electrolysis cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勿忘9451发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
zzz完成签到,获得积分10
1秒前
清脆苑博发布了新的文献求助10
1秒前
xuxuux完成签到,获得积分10
1秒前
2秒前
cc发布了新的文献求助10
2秒前
2秒前
ceeray23应助薄荷喵采纳,获得10
2秒前
在水一方应助小宇采纳,获得10
3秒前
4149发布了新的文献求助10
3秒前
3秒前
4秒前
无极微光应助123456采纳,获得20
5秒前
夕寸发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
英姑应助七点半采纳,获得10
6秒前
LYP发布了新的文献求助10
6秒前
6秒前
充电宝应助星星采纳,获得10
6秒前
刘海婷完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
黄东胜发布了新的文献求助10
8秒前
现代rong发布了新的文献求助10
8秒前
落后醉易发布了新的文献求助10
8秒前
星辰大海应助cassie采纳,获得10
8秒前
小贝完成签到,获得积分10
8秒前
9秒前
英俊的问夏应助RENFF采纳,获得10
9秒前
morry5007发布了新的文献求助10
9秒前
星星完成签到,获得积分10
10秒前
10秒前
sy7777完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836