Enhancing Efficiency in Alkaline Electrolysis Cells: Optimizing Flow Channels through Multiphase Computational Fluid Dynamics Modeling

阳极 机械 流体力学 电解 阴极 流量(数学) 材料科学 电解质 化学 工艺工程 模拟 计算机科学 电极 工程类 物理 物理化学
作者
Longchang Xue,Shuaishuai Song,Wei Chen,Bin Liu,Xin Wang
出处
期刊:Energies [MDPI AG]
卷期号:17 (2): 448-448
标识
DOI:10.3390/en17020448
摘要

The efficient operation of alkaline water electrolysis cells hinges upon understanding and optimizing gas–liquid flow dynamics. Achieving uniform flow patterns is crucial to minimize stagnant regions, prevent gas bubble accumulation, and establish optimal conditions for electrochemical reactions. This study employed a comprehensive, three-dimensional computational fluid dynamics Euler–Euler multiphase model, based on a geometric representation of an alkaline electrolytic cell. The electrochemical model, responsible for producing hydrogen and oxygen at the cathode and anode during water electrolysis, is integrated into the flow model by introducing mass source terms within the user-defined function. The membrane positioned between the flow channels employs a porous medium model to selectively permit specific components to pass through while restricting others. To validate the accuracy of the model, comparisons were made with measured data available in the literature. We obtained an optimization design method for the channel structure; the three-inlet model demonstrated improved speed and temperature uniformity, with a 22% reduction in the hydrogen concentration at the outlet compared to the single-inlet model. This resulted in the optimization of gas emission efficiency. As the radius of the spherical convex structure increased, the influence of the spherical convex structure on the electrolyte intensified, resulting in enhanced flow uniformity within the flow field. This study may help provide recommendations for designing and optimizing flow channels to enhance the efficiency of alkaline water electrolysis cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方既白完成签到,获得积分10
1秒前
1秒前
1秒前
今后应助yummy采纳,获得10
1秒前
CYH完成签到,获得积分10
2秒前
2秒前
跳跃碧灵发布了新的文献求助10
3秒前
3秒前
岑岑岑发布了新的文献求助10
7秒前
8秒前
wenqing完成签到 ,获得积分10
8秒前
CYH发布了新的文献求助10
9秒前
艰苦伟大反抗完成签到,获得积分10
9秒前
伶俐皮卡丘完成签到,获得积分10
11秒前
开放念柏发布了新的文献求助10
12秒前
14秒前
lize5493完成签到,获得积分10
14秒前
15秒前
彭于晏应助zzz采纳,获得10
15秒前
大力云朵完成签到,获得积分10
15秒前
ding应助zhaoman采纳,获得10
17秒前
英姑应助专注寻菱采纳,获得10
18秒前
18秒前
jjjwln发布了新的文献求助10
20秒前
yyyy完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
23秒前
24秒前
完美世界应助疯狂的迪子采纳,获得10
26秒前
26秒前
27秒前
夏夏发布了新的文献求助10
27秒前
28秒前
迷路的半双完成签到 ,获得积分10
28秒前
29秒前
29秒前
30秒前
脑洞疼应助lemon采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297