Nonlinear error self-correction for fringe projection profilometry with minimum phase probability variance

轮廓仪 光学 投影(关系代数) 非线性系统 差异(会计) 相(物质) 结构光三维扫描仪 计算机科学 材料科学 算法 物理 表面光洁度 会计 扫描仪 量子力学 业务 复合材料
作者
Yabing Zheng,Minghui Duan,Ruihu Zhang,Xin Fan,Yi Jin,Jinjin Zheng
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:174: 110658-110658 被引量:1
标识
DOI:10.1016/j.optlastec.2024.110658
摘要

Nonlinear intensity responses of used devices, resulting in negative effects on the measurement accuracy, are a well-known problem in fringe projection profilometry (FPP). Previous studies have concentrated on estimating the global response parameters of the system through tedious calibration or auxiliary fringe patterns, which weaken the generalization capability and reduce measurement efficiency, respectively. To this end, we introduce a flexible nonlinear error self-correction method based on the minimum phase probability variance without prior calibration or extra projection. First, based on the nonlinear response expression of the system, we derive a pixel-independent parameter estimation model, which reveals that the resulting inverse-wrapped phase can correct nonlinear errors to some extent. Subsequently, an iterative averaging scheme is further developed to maximize the error correction and finalize the optimal phase. In particular, a new phase quality metric, called the phase probability variance, is proposed to guide the iteration process and evaluate the acquired average phases. The proposed method does not require tedious calibration or extra projection while being insensitive to unwrapping schemes, time-varying nonlinear systems, and fringe frequencies, thus greatly improving measurement efficiency and facilitating generalization capabilities. Moreover, the pointwise correction is able to effectively protect the edges and details of the measured object. The results of the simulations and experiments confirm that the proposed method is capable of significantly reducing the phase errors induced by the system’s nonlinearity and improving the measurement accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenyanlei发布了新的文献求助10
刚刚
一汁蟹发布了新的文献求助20
1秒前
大个应助绿麦盲区采纳,获得10
1秒前
雨齐完成签到,获得积分10
1秒前
茶艺如何发布了新的文献求助10
1秒前
1秒前
kk完成签到,获得积分10
2秒前
2秒前
123发布了新的文献求助10
2秒前
yyyy完成签到,获得积分10
3秒前
好好学习天天向上完成签到,获得积分10
3秒前
欣慰友梅发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助易伊澤采纳,获得10
4秒前
格局太小完成签到,获得积分10
4秒前
4秒前
尔云完成签到,获得积分10
5秒前
传奇3应助GGZ采纳,获得10
5秒前
我瞎蒙发布了新的文献求助10
5秒前
llllllll完成签到,获得积分10
6秒前
香蕉觅云应助shenyanlei采纳,获得10
6秒前
kdkfjaljk完成签到 ,获得积分10
6秒前
6秒前
CipherSage应助芒果采纳,获得10
6秒前
6秒前
7秒前
nini完成签到,获得积分10
7秒前
7秒前
7秒前
FloppyWow发布了新的文献求助10
8秒前
8秒前
8秒前
白白发布了新的文献求助10
9秒前
隐形曼青应助小猴采纳,获得10
9秒前
灵巧荆发布了新的文献求助10
9秒前
10秒前
kdkfjaljk关注了科研通微信公众号
11秒前
Jackson发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762