阳极
金属锂
电解质
材料科学
锂(药物)
耐久性
接口(物质)
快离子导体
金属
同种类的
枝晶(数学)
降级(电信)
能量密度
纳米技术
化学工程
工程物理
复合材料
电极
冶金
化学
工程类
润湿
计算机科学
物理
热力学
内分泌学
物理化学
几何学
数学
坐滴法
电信
医学
作者
Chenyang Wang,Ziyue Zeng,Peimeng Qiu,Peng Li,Shurun Chen,Shengli Chen,Mengqi Zeng,Lei Fu
出处
期刊:Matter
[Elsevier]
日期:2024-02-02
卷期号:7 (3): 934-947
被引量:4
标识
DOI:10.1016/j.matt.2024.01.010
摘要
The advent of solid-state batteries (SSBs) featuring Li metal anodes heralds a momentous opportunity for electrified transport with enhanced safety and remarkable energy density. Nevertheless, the intrinsic lithiophobic nature of solid electrolytes will give rise to inevitable vacancies and voids at the interface between solid electrolytes and Li metal, resulting in pronounced local current accumulation and dendrite formation. Here, an ultra-wettable interface between the solid electrolyte and the metal anode is established, ensuring a seamless connection at the atomic level, accomplished through the incorporation of a liquid metal. It is demonstrated that the interface facilitates the formation of a homogeneous and unbroken Li+ transportation pathway, promoting rapid and stable Li+ transport across the interface. In this regard, the SSBs exhibit exceptional durability for extended periods of over 7,200 h and exhibit favorable performance at various rates. This strategy paves an avenue for designing highly steady SSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI