焊接
时域
机器人焊接
计算机科学
工程类
机械工程
计算机视觉
作者
Jianhua Tao,Norzalilah Mohamad Nor,Ahmad Badri Abdullah
标识
DOI:10.1016/j.ymssp.2023.110962
摘要
Weld penetration control has emerged as a critical area of research in the field of online control for ensuring the quality of robotic welds. Acoustic signals, which are known for their distinct temporal characteristics, play a pivotal role in the online assessment of weld quality. This study proposes a novel filter bank specifically tailored for robotic welding and investigates the working environment of robot welding. Twenty-six time-domain and frequency-domain features were extracted from weld acoustic signals, and statistical analyses and comparative methods were used to identify variations in defective signal features and interpret their physical significance. By leveraging these acoustic signal characteristics, this study established a predictive identification model and an online feedback controller. The predictive identification model effectively identified different penetration levels in the welding process, and the identification results served as a reference input for online regulation of the welding speed by the controller. Additionally, a digital twin system was developed, where the identification model and controller functioned as digital objects on a computer and an edge computer, respectively. Experimental tests demonstrated the superior performance of the system and model in accurately reflecting welding process penetration, regulating and stabilising the welding speed, and significantly enhancing the welding quality. The research presented in this paper offers notable advantages for the online control of welding penetration.
科研通智能强力驱动
Strongly Powered by AbleSci AI