Finetuning Pretrained Model with Embedding of Domain and Language Information for ASR of Very Low-Resource Settings

计算机科学 嵌入 领域(数学分析) 语言模型 资源(消歧) 自然语言处理 人工智能 情报检索 数学 计算机网络 数学分析
作者
Kak Soky,Sheng Li,Chenhui Chu,Tatsuya Kawahara
出处
期刊:International Journal of Asian Language Processing [World Scientific]
卷期号:33 (04)
标识
DOI:10.1142/s2717554523500248
摘要

This study investigates the effective incorporation of meta-information such as domain and language in finetuning a pretrained model based on self-supervised learning (SSL) for automatic speech recognition (ASR) in very low-resource settings. SSL pretrained models have been shown to achieve comparable or even better performance to conventional end-to-end systems even when we finetune them with a small dataset. However, it still requires the specific target dataset with a considerable amount of labeled data, like 10 h, to achieve satisfactory performance. Thus, we propose to exploit heterogeneous datasets which are partially matched either in language or domain and apply multi-task learning (MTL) or adversarial learning (ADV) using the meta-information. The finetuning comprises (1) domain adaptation, which uses in-domain multi-lingual datasets, and (2) language adaptation, which uses datasets of the same language but different domains. The auxiliary task is domain identification for language adaptation and language identification for domain adaptation. We then embed the output of the auxiliary task into the encoder output of the ASR task. The target dataset is the Khmer corpus of the Extraordinary Chambers in the Courts of Cambodia (ECCC) in various sizes from one hour to 10 h. The experimental evaluations demonstrate that fusing the meta-information in MTL or ADV significantly improves ASR accuracy. Moreover, a two-step adaptation method which first conducts domain adaptation and then language adaptation is the most effective. We also show that the target labeled dataset of only 5 h gives an almost saturated performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
万能图书馆应助李鑫采纳,获得10
2秒前
易烊千玺发布了新的文献求助10
3秒前
丘比特应助常常在努力采纳,获得30
4秒前
Hello应助单纯的荔枝采纳,获得10
4秒前
4秒前
赘婿应助可乐采纳,获得10
6秒前
畅快芝麻发布了新的文献求助10
6秒前
Hello应助今晚打老虎采纳,获得10
6秒前
7秒前
橙月发布了新的文献求助10
7秒前
Owen应助2021采纳,获得10
8秒前
pdc发布了新的文献求助10
9秒前
科研通AI2S应助zz采纳,获得10
10秒前
大大大大大完成签到,获得积分10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
12秒前
大鱼完成签到,获得积分10
13秒前
小星星发布了新的文献求助10
14秒前
YYX完成签到 ,获得积分10
15秒前
16秒前
NexusExplorer应助二次元喵酱采纳,获得10
17秒前
易烊千玺完成签到,获得积分10
17秒前
20秒前
朴实的面包完成签到 ,获得积分10
20秒前
pdc完成签到,获得积分10
22秒前
单薄的浩阑完成签到 ,获得积分10
22秒前
23秒前
二次元喵酱完成签到,获得积分10
23秒前
23秒前
可乐发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316163
求助须知:如何正确求助?哪些是违规求助? 2947769
关于积分的说明 8538487
捐赠科研通 2623875
什么是DOI,文献DOI怎么找? 1435579
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457