Industrial carbon emission forecasting considering external factors based on linear and machine learning models

自回归积分移动平均 平均绝对百分比误差 Lasso(编程语言) 温室气体 水准点(测量) 计算机科学 线性回归 支持向量机 自回归模型 计量经济学 时间序列 机器学习 数学 人工神经网络 地理 万维网 生物 生态学 大地测量学
作者
Ye Liang,Pei Du,Shubin Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:434: 140010-140010 被引量:24
标识
DOI:10.1016/j.jclepro.2023.140010
摘要

Accurate forecasting of carbon emissions has become a critical task for the government to formulate effective policies and sustainable development. However, previous studies have mainly focused on large-scale carbon emissions forecasting, while urban-level carbon emission forecasting is equally important but rarely covered. In this study, we propose a novel carbon emission forecasting framework combining linear and machine learning models that considers both time dynamics and external influences. To improve the accuracy and explanatory power of the proposed model, we first introduce twelve initial influencing factors by considering the urban development, economic development, industrial energy consumption, and demographic factors. And then Lasso regression algorithm is adopted to filter out the indicators with poor predictive power. Finally, a combined prediction model by integrating Autoregressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR) models is established to capture linear and nonlinear features, respectively. The simulation results show that compared with benchmark models, the proposed model indicates stronger prediction performance with a Mean Absolute Percentage Error (MAPE) of 0.096 and a R-squared (R2) of 97.5%. In addition, six future development scenarios, including carbon emission projections for industrial growth and environmental protection factors, are also performed in this study to provide recommendations for carbon emission reduction programmers and related policy formulation. In conclusion, the forecasting framework proposed in this research can help to identify the key factors affecting carbon dioxide emissions and provide a quantitative reference for carbon dioxide emission reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的寻绿完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
H2O完成签到,获得积分10
3秒前
梓然完成签到,获得积分10
3秒前
姜磊发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
Ava应助时尚俊驰采纳,获得10
5秒前
余南发布了新的文献求助10
6秒前
7秒前
hanleiharry1发布了新的文献求助10
7秒前
段一帆发布了新的文献求助10
7秒前
充电宝应助mx采纳,获得10
7秒前
杰2580发布了新的文献求助10
8秒前
puff驳回了Ava应助
9秒前
10秒前
10秒前
阿牛哥发布了新的文献求助10
11秒前
香蕉觅云应助东晓采纳,获得10
12秒前
12秒前
姜磊完成签到,获得积分20
13秒前
13秒前
xxddw发布了新的文献求助10
14秒前
14秒前
谢海洋完成签到,获得积分10
15秒前
16秒前
loski发布了新的文献求助10
17秒前
18秒前
xueyu发布了新的文献求助10
19秒前
20秒前
lincy完成签到,获得积分10
21秒前
fqk完成签到,获得积分10
21秒前
22秒前
hanleiharry1发布了新的文献求助10
22秒前
22秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174