膜
质子输运
化学
氢键
离子运输机
质子
冠醚
离子
电导
选择性
分子动力学
分子
化学物理
结晶学
计算化学
有机化学
生物化学
物理
数学
量子力学
组合数学
催化作用
作者
Yongchao Qian,Yadong Wu,Shuai Qiu,Xiaofeng He,Yuyang Liu,Xiang‐Yu Kong,Wei Tian,Lei Jiang,Liping Wen
标识
DOI:10.1002/anie.202300167
摘要
Biological proton channels play important roles in the delicate metabolism process, and have led to great interest in mimicking selective proton transport. Herein, we designed a bioinspired proton transport membrane by incorporating flexible 14-crown-4 (14C4) units into rigid frameworks of polyimine films by an interfacial Schiff base reaction. The Young's modulus of the membrane reaches about 8.2 GPa. The 14C4 units could grab water, thereby forming hydrogen bond-water networks and acting as jumping sites to lower the energy barrier of proton transport. The molecular chains present a vertical orientation to the membrane, and the ions travel between the quasi-planar molecular sheets. Furthermore, the 14C4 moieties could bond alkali ions through host-guest interactions. Thus, the ion conductance follows H+ ≫K+ >Na+ >Li+ , and an ultrahigh selectivity of H+ /Li+ (ca. 215) is obtained. This study provides an effective avenue for developing ion-selective membranes by embedding macrocycle motifs with inherent cavities.
科研通智能强力驱动
Strongly Powered by AbleSci AI