Approximate Clustering Ensemble Method for Big Data

聚类分析 计算机科学 不相交集 大数据 数据挖掘 相关聚类 组分(热力学) 星团(航天器) 人工智能 数学 组合数学 物理 程序设计语言 热力学
作者
Mohammad Sultan Mahmud,Joshua Zhexue Huang,Rukhsana Ruby,Alladoumbaye Ngueilbaye,Kaishun Wu
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 1142-1155 被引量:6
标识
DOI:10.1109/tbdata.2023.3255003
摘要

Clustering a big distributed dataset of hundred gigabytes or more is a challenging task in distributed computing. A popular method to tackle this problem is to use a random sample of the big dataset to compute an approximate result as an estimation of the true result computed from the entire dataset. In this paper, instead of using a single random sample, we use multiple random samples to compute an ensemble result as the estimation of the true result of the big dataset. We propose a distributed computing framework to compute the ensemble result. In this framework, a big dataset is represented in the RSP data model as random sample data blocks managed in a distributed file system. To compute the ensemble clustering result, a set of RSP data blocks is randomly selected as random samples and clustered independently in parallel on the nodes of a cluster to generate the component clustering results. The component results are transferred to the master node, which computes the ensemble result. Since the random samples are disjoint and traditional consensus functions cannot be used, we propose two new methods to integrate the component clustering results into the final ensemble result. The first method uses component cluster centers to build a graph and the METIS algorithm to cut the graph into subgraphs, from which a set of candidate cluster centers is found. A hierarchical clustering method is then used to generate the final set of $k$ cluster centers. The second method uses the clustering-by-passing-messages method to generate the final set of $k$ cluster centers. Finally, the $k$ -means algorithm was used to allocate the entire dataset into $k$ clusters. Experiments were conducted on both synthetic and real-world datasets. The results show that the new ensemble clustering methods performed better than the comparison methods and that the distributed computing framework is efficient and scalable in clustering big datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助xushanqi采纳,获得10
刚刚
jacob258完成签到 ,获得积分0
刚刚
1秒前
2秒前
清安完成签到,获得积分10
3秒前
4秒前
桐桐应助五月采纳,获得10
5秒前
CodeCraft应助坚强丸子采纳,获得10
6秒前
我是老大应助悦耳的盼夏采纳,获得10
7秒前
7秒前
8秒前
nbbyysnbb发布了新的文献求助10
10秒前
11秒前
11秒前
JamesPei应助小冉采纳,获得10
11秒前
12秒前
小鹿发布了新的文献求助30
14秒前
15秒前
hao完成签到,获得积分10
15秒前
李健的小迷弟应助小鱼儿采纳,获得10
16秒前
PP发布了新的文献求助50
17秒前
CNSer发布了新的文献求助10
18秒前
xushanqi发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
林薯条发布了新的文献求助10
22秒前
23秒前
CNSer完成签到,获得积分10
23秒前
苗青关注了科研通微信公众号
24秒前
你说呢叙叙旧完成签到,获得积分10
24秒前
24秒前
子车钧发布了新的文献求助10
25秒前
nbbyysnbb发布了新的文献求助10
26秒前
26秒前
zho发布了新的文献求助20
26秒前
28秒前
小鱼儿发布了新的文献求助10
29秒前
子车钧完成签到,获得积分10
30秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422593
求助须知:如何正确求助?哪些是违规求助? 3022859
关于积分的说明 8902954
捐赠科研通 2710376
什么是DOI,文献DOI怎么找? 1486403
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682285