TrDosePred: A deep learning dose prediction algorithm based on transformers for head and neck cancer radiotherapy

放射治疗计划 计算机科学 头颈部 放射治疗 头颈部癌 深度学习 人工智能 算法 机器学习 医学 放射科 外科
作者
Chenchen Hu,Haiyun Wang,Wenyi Zhang,Yaoqin Xie,Ling Jiao,Songye Cui
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:24 (7) 被引量:1
标识
DOI:10.1002/acm2.13942
摘要

Intensity-Modulated Radiation Therapy (IMRT) has been the standard of care for many types of tumors. However, treatment planning for IMRT is a time-consuming and labor-intensive process.To alleviate this tedious planning process, a novel deep learning based dose prediction algorithm (TrDosePred) was developed for head and neck cancers.The proposed TrDosePred, which generated the dose distribution from a contoured CT image, was a U-shape network constructed with a convolutional patch embedding and several local self-attention based transformers. Data augmentation and ensemble approach were used for further improvement. It was trained based on the dataset from Open Knowledge-Based Planning Challenge (OpenKBP). The performance of TrDosePred was evaluated with two mean absolute error (MAE) based scores utilized by OpenKBP challenge (i.e., Dose score and DVH score) and compared to the top three approaches of the challenge. In addition, several state-of-the-art methods were implemented and compared to TrDosePred.The TrDosePred ensemble achieved the dose score of 2.426 Gy and the DVH score of 1.592 Gy on the test dataset, ranking at 3rd and 9th respectively in the leaderboard on CodaLab as of writing. In terms of DVH metrics, on average, the relative MAE against the clinical plans was 2.25% for targets and 2.17% for organs at risk.A transformer-based framework TrDosePred was developed for dose prediction. The results showed a comparable or superior performance as compared to the previous state-of-the-art approaches, demonstrating the potential of transformer to boost the treatment planning procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
友好梦岚完成签到,获得积分20
1秒前
exquisite完成签到,获得积分10
1秒前
阿曼尼完成签到 ,获得积分10
1秒前
1秒前
啵啵虎发布了新的文献求助10
2秒前
明明ming999_完成签到,获得积分10
2秒前
Sealight完成签到,获得积分10
2秒前
star完成签到,获得积分10
2秒前
2秒前
烯灯完成签到,获得积分10
3秒前
3秒前
hai发布了新的文献求助30
4秒前
水电费完成签到 ,获得积分10
4秒前
翊然甜周发布了新的文献求助20
4秒前
ANNI发布了新的文献求助10
4秒前
MY关闭了MY文献求助
5秒前
凳子琪完成签到,获得积分10
6秒前
二师兄发布了新的文献求助10
6秒前
6秒前
sue402完成签到,获得积分10
6秒前
彭于晏应助壮观的白枫采纳,获得10
7秒前
翔哥完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
XZZH完成签到,获得积分10
7秒前
丘比特应助葛怀锐采纳,获得30
8秒前
8秒前
8秒前
勿奈何完成签到,获得积分10
8秒前
鱼柒完成签到 ,获得积分10
9秒前
读不完的文献啊完成签到,获得积分10
9秒前
犹豫小蚂蚁完成签到,获得积分10
9秒前
辛勤谷雪发布了新的文献求助10
9秒前
purplelove完成签到 ,获得积分10
9秒前
zp发布了新的文献求助10
9秒前
123完成签到 ,获得积分10
10秒前
10秒前
典雅问寒应助ATM采纳,获得10
10秒前
xyzhang发布了新的文献求助10
11秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423