TrDosePred: A deep learning dose prediction algorithm based on transformers for head and neck cancer radiotherapy

放射治疗计划 计算机科学 头颈部 放射治疗 头颈部癌 深度学习 人工智能 算法 机器学习 医学 放射科 外科
作者
Chenchen Hu,Haiyun Wang,Wenyi Zhang,Yaoqin Xie,Ling Jiao,Songye Cui
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:24 (7) 被引量:1
标识
DOI:10.1002/acm2.13942
摘要

Intensity-Modulated Radiation Therapy (IMRT) has been the standard of care for many types of tumors. However, treatment planning for IMRT is a time-consuming and labor-intensive process.To alleviate this tedious planning process, a novel deep learning based dose prediction algorithm (TrDosePred) was developed for head and neck cancers.The proposed TrDosePred, which generated the dose distribution from a contoured CT image, was a U-shape network constructed with a convolutional patch embedding and several local self-attention based transformers. Data augmentation and ensemble approach were used for further improvement. It was trained based on the dataset from Open Knowledge-Based Planning Challenge (OpenKBP). The performance of TrDosePred was evaluated with two mean absolute error (MAE) based scores utilized by OpenKBP challenge (i.e., Dose score and DVH score) and compared to the top three approaches of the challenge. In addition, several state-of-the-art methods were implemented and compared to TrDosePred.The TrDosePred ensemble achieved the dose score of 2.426 Gy and the DVH score of 1.592 Gy on the test dataset, ranking at 3rd and 9th respectively in the leaderboard on CodaLab as of writing. In terms of DVH metrics, on average, the relative MAE against the clinical plans was 2.25% for targets and 2.17% for organs at risk.A transformer-based framework TrDosePred was developed for dose prediction. The results showed a comparable or superior performance as compared to the previous state-of-the-art approaches, demonstrating the potential of transformer to boost the treatment planning procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甘博发布了新的文献求助10
1秒前
2秒前
Orange应助Cellchang采纳,获得10
2秒前
孙燕应助陈红安采纳,获得30
3秒前
刻苦的班完成签到,获得积分10
4秒前
4秒前
EASA完成签到,获得积分10
7秒前
JamesPei应助Woaimama724采纳,获得10
7秒前
7秒前
gnil发布了新的文献求助10
7秒前
欢呼伟祺完成签到,获得积分10
9秒前
10秒前
Sun发布了新的文献求助10
11秒前
柚子发布了新的文献求助10
13秒前
老实的石头完成签到,获得积分10
13秒前
feng完成签到,获得积分10
13秒前
15秒前
老程完成签到,获得积分10
16秒前
研友_VZG7GZ应助shine采纳,获得10
16秒前
20秒前
24秒前
RenS完成签到,获得积分10
26秒前
27秒前
wkjfh应助EASA采纳,获得10
27秒前
28秒前
thisnn发布了新的文献求助10
32秒前
AJ发布了新的文献求助10
32秒前
ay发布了新的文献求助20
32秒前
李莫凡关注了科研通微信公众号
35秒前
Rondab应助EASA采纳,获得10
37秒前
淡水痕完成签到,获得积分10
38秒前
Hello应助ay采纳,获得20
38秒前
隐形惜筠发布了新的文献求助10
39秒前
科研通AI5应助一天吃瓜25h采纳,获得10
41秒前
共享精神应助xxz采纳,获得10
41秒前
Oceanstal完成签到,获得积分10
42秒前
ay完成签到,获得积分10
45秒前
李健的小迷弟应助江江采纳,获得10
45秒前
陈红安完成签到,获得积分10
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644