TrDosePred: A deep learning dose prediction algorithm based on transformers for head and neck cancer radiotherapy

放射治疗计划 计算机科学 头颈部 放射治疗 头颈部癌 深度学习 人工智能 算法 机器学习 医学 放射科 外科
作者
Chenchen Hu,Haiyun Wang,Wenyi Zhang,Yaoqin Xie,Ling Jiao,Songye Cui
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:24 (7) 被引量:1
标识
DOI:10.1002/acm2.13942
摘要

Intensity-Modulated Radiation Therapy (IMRT) has been the standard of care for many types of tumors. However, treatment planning for IMRT is a time-consuming and labor-intensive process.To alleviate this tedious planning process, a novel deep learning based dose prediction algorithm (TrDosePred) was developed for head and neck cancers.The proposed TrDosePred, which generated the dose distribution from a contoured CT image, was a U-shape network constructed with a convolutional patch embedding and several local self-attention based transformers. Data augmentation and ensemble approach were used for further improvement. It was trained based on the dataset from Open Knowledge-Based Planning Challenge (OpenKBP). The performance of TrDosePred was evaluated with two mean absolute error (MAE) based scores utilized by OpenKBP challenge (i.e., Dose score and DVH score) and compared to the top three approaches of the challenge. In addition, several state-of-the-art methods were implemented and compared to TrDosePred.The TrDosePred ensemble achieved the dose score of 2.426 Gy and the DVH score of 1.592 Gy on the test dataset, ranking at 3rd and 9th respectively in the leaderboard on CodaLab as of writing. In terms of DVH metrics, on average, the relative MAE against the clinical plans was 2.25% for targets and 2.17% for organs at risk.A transformer-based framework TrDosePred was developed for dose prediction. The results showed a comparable or superior performance as compared to the previous state-of-the-art approaches, demonstrating the potential of transformer to boost the treatment planning procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simon完成签到,获得积分10
刚刚
2秒前
小李爱吃梨完成签到 ,获得积分10
2秒前
青山道友发布了新的文献求助10
2秒前
无花果应助叶子采纳,获得10
2秒前
3秒前
keyan完成签到,获得积分20
5秒前
传奇3应助berg采纳,获得10
5秒前
yy发布了新的文献求助10
6秒前
6秒前
mimi发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分10
8秒前
9秒前
wfy1227完成签到,获得积分10
10秒前
在郑州发布了新的文献求助20
10秒前
莹亮的星空完成签到,获得积分0
10秒前
10秒前
David完成签到,获得积分10
12秒前
KK发布了新的文献求助10
12秒前
小大夫完成签到 ,获得积分10
12秒前
13秒前
涣醒完成签到,获得积分10
13秒前
13秒前
萧水白发布了新的文献求助100
14秒前
慕青应助halendong采纳,获得10
14秒前
15秒前
15秒前
叶子发布了新的文献求助10
16秒前
17秒前
17秒前
Orange应助John采纳,获得10
17秒前
euphoria发布了新的文献求助10
19秒前
19秒前
JY发布了新的文献求助10
19秒前
研友_VZG7GZ应助陶醉觅夏采纳,获得30
20秒前
易安应助1111chen采纳,获得10
20秒前
俭朴的小熊猫完成签到,获得积分10
20秒前
oo发布了新的文献求助10
21秒前
小其发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587