神经形态工程学
MNIST数据库
纳米片
晶体管
材料科学
边缘计算
GSM演进的增强数据速率
计算机科学
计算机体系结构
纳米技术
电子工程
神经科学
光电子学
人工神经网络
电气工程
电压
人工智能
工程类
生物
作者
Jeechan Yoon,Bolim You,Yuna Kim,Jina Bak,Mino Yang,Jihyang Park,Myung Gwan Hahm,Moonsang Lee
标识
DOI:10.1021/acsami.3c00254
摘要
While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI