Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wykion完成签到,获得积分0
1秒前
Orange应助gougoudy采纳,获得10
1秒前
赛赛发布了新的文献求助10
1秒前
lala发布了新的文献求助10
3秒前
可爱的函函应助桃博采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
可爱的函函应助大胆听莲采纳,获得10
5秒前
清秋夜露白完成签到,获得积分10
6秒前
li完成签到,获得积分10
6秒前
我是老大应助Qumy采纳,获得10
6秒前
Akim应助泥蝶采纳,获得10
6秒前
7秒前
正直的魔镜完成签到,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
lala完成签到,获得积分10
9秒前
9秒前
9秒前
FashionBoy应助JERRY采纳,获得10
9秒前
Lin完成签到,获得积分10
10秒前
10秒前
Elaine2021完成签到 ,获得积分10
10秒前
11秒前
科研通AI6.1应助熙熙采纳,获得10
11秒前
12秒前
13秒前
小铃铛发布了新的文献求助10
13秒前
灵巧鑫发布了新的文献求助10
13秒前
欢喜发布了新的文献求助10
13秒前
李爱国应助xyy采纳,获得10
14秒前
举头望sunshine完成签到,获得积分10
14秒前
天雨流芳发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
和谐的松鼠完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771006
求助须知:如何正确求助?哪些是违规求助? 5588895
关于积分的说明 15426243
捐赠科研通 4904384
什么是DOI,文献DOI怎么找? 2638696
邀请新用户注册赠送积分活动 1586530
关于科研通互助平台的介绍 1541682