Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴夜雪发布了新的文献求助10
刚刚
Hello应助橙橙梨梨茶采纳,获得10
1秒前
认真的rain发布了新的文献求助50
2秒前
深情的鑫鹏完成签到,获得积分10
2秒前
寒涛先生发布了新的文献求助10
3秒前
空心发布了新的文献求助30
3秒前
希望天下0贩的0应助星星采纳,获得10
4秒前
krkr完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI5应助111111111采纳,获得10
5秒前
5秒前
粗犷的书包完成签到,获得积分10
6秒前
Jasper应助shanbaibai采纳,获得10
6秒前
6秒前
Laus发布了新的文献求助10
9秒前
9秒前
cheung发布了新的文献求助10
9秒前
害羞向日葵完成签到 ,获得积分10
10秒前
ppp完成签到,获得积分10
11秒前
唠叨的白萱完成签到,获得积分10
12秒前
傲娇的凡旋完成签到,获得积分10
12秒前
fusheng完成签到 ,获得积分10
13秒前
13秒前
兔子完成签到,获得积分20
14秒前
Zzzzzzzzzzz完成签到,获得积分20
14秒前
14秒前
15秒前
16秒前
17秒前
谭谨川发布了新的文献求助10
17秒前
cheung完成签到,获得积分10
17秒前
乌日汗完成签到,获得积分10
18秒前
18秒前
18秒前
公茂源完成签到 ,获得积分10
19秒前
共享精神应助spurs17采纳,获得30
20秒前
BONBON发布了新的文献求助10
21秒前
liuqian发布了新的文献求助10
21秒前
浮生完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808