Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气成仁完成签到,获得积分10
1秒前
2秒前
哈哈完成签到,获得积分10
4秒前
书生完成签到,获得积分10
4秒前
hyw完成签到,获得积分10
5秒前
风中的蜜蜂完成签到,获得积分10
5秒前
Melody完成签到,获得积分10
6秒前
哈哈发布了新的文献求助10
7秒前
自由宛筠完成签到 ,获得积分20
7秒前
sevenvictory完成签到,获得积分10
7秒前
落后的怀梦完成签到 ,获得积分10
8秒前
夏日完成签到 ,获得积分10
8秒前
Tao完成签到,获得积分10
8秒前
斯文败类应助落寞鞋子采纳,获得10
9秒前
9秒前
哈利波特完成签到,获得积分10
10秒前
确幸完成签到,获得积分10
11秒前
春鸮鸟完成签到 ,获得积分10
11秒前
卡牌大师完成签到,获得积分10
13秒前
八点必起完成签到,获得积分10
14秒前
uuuu完成签到 ,获得积分10
14秒前
霜之哀伤发布了新的文献求助10
15秒前
CodeCraft应助Yi采纳,获得20
15秒前
williamwang_2完成签到,获得积分20
16秒前
心有猛虎完成签到,获得积分10
17秒前
liyan完成签到 ,获得积分10
19秒前
不想喝周完成签到,获得积分10
21秒前
华仔应助哈哈采纳,获得30
22秒前
雪上一枝蒿完成签到,获得积分10
24秒前
piaoaxi完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
Tangviva1988完成签到,获得积分10
26秒前
小七完成签到,获得积分10
27秒前
faye完成签到,获得积分10
28秒前
秋思冬念完成签到 ,获得积分10
28秒前
爱听歌的人达完成签到,获得积分10
29秒前
小屁孩完成签到,获得积分0
30秒前
lsy完成签到,获得积分10
31秒前
张牧之完成签到 ,获得积分10
32秒前
廉洁完成签到,获得积分10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976745
求助须知:如何正确求助?哪些是违规求助? 3520831
关于积分的说明 11204954
捐赠科研通 3257742
什么是DOI,文献DOI怎么找? 1798834
邀请新用户注册赠送积分活动 877912
科研通“疑难数据库(出版商)”最低求助积分说明 806663