Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助笨笨的秋采纳,获得10
1秒前
无聊的秋刀鱼完成签到,获得积分10
1秒前
打打应助张十一采纳,获得10
2秒前
连仁兄发布了新的文献求助10
3秒前
琦琦发布了新的文献求助10
3秒前
罗luoluo完成签到,获得积分10
3秒前
皮城小伙发布了新的文献求助10
4秒前
4秒前
6秒前
朴实子骞完成签到 ,获得积分10
6秒前
无限大门完成签到,获得积分10
8秒前
彦希发布了新的文献求助10
8秒前
李健应助张小明采纳,获得10
8秒前
9秒前
自觉平露完成签到,获得积分10
9秒前
10秒前
半夏发布了新的文献求助10
11秒前
HE完成签到 ,获得积分10
12秒前
小莫完成签到 ,获得积分10
12秒前
12秒前
我是老大应助cxd采纳,获得10
13秒前
Slyvia2025发布了新的文献求助30
13秒前
跳跃的冬灵完成签到,获得积分10
13秒前
宋宋发布了新的文献求助10
13秒前
CodeCraft应助千幻采纳,获得10
14秒前
heyujie发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
大喜子发布了新的文献求助10
16秒前
Guochunbao完成签到,获得积分10
19秒前
20秒前
慕青应助茴香豆采纳,获得10
21秒前
rockli完成签到,获得积分10
22秒前
bian发布了新的文献求助10
25秒前
heyujie完成签到,获得积分10
26秒前
zzzlll完成签到,获得积分10
26秒前
田様应助xxq采纳,获得10
27秒前
小密母完成签到 ,获得积分10
28秒前
情怀应助bemyselfelsa采纳,获得10
29秒前
Marciu33发布了新的文献求助10
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972225
求助须知:如何正确求助?哪些是违规求助? 3516715
关于积分的说明 11184237
捐赠科研通 3252126
什么是DOI,文献DOI怎么找? 1796253
邀请新用户注册赠送积分活动 876339
科研通“疑难数据库(出版商)”最低求助积分说明 805483