Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助谦让夜香采纳,获得10
1秒前
闫伯涵完成签到,获得积分10
1秒前
动听千风发布了新的文献求助10
3秒前
oneJone发布了新的文献求助10
4秒前
NexusExplorer应助cz采纳,获得10
4秒前
XY发布了新的文献求助10
4秒前
5秒前
ERICLEE82完成签到 ,获得积分10
5秒前
8秒前
YaN完成签到 ,获得积分10
8秒前
9秒前
满意嘉熙发布了新的文献求助10
11秒前
张小小发布了新的文献求助60
13秒前
13秒前
Lois_woo发布了新的文献求助10
13秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
鼠霸霸应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
17秒前
慕青应助Gaopkid采纳,获得10
17秒前
wanci应助科研通管家采纳,获得30
17秒前
yar应助科研通管家采纳,获得10
17秒前
17秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
yar应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
20秒前
北秋发布了新的文献求助10
20秒前
orixero应助无尘采纳,获得10
20秒前
mc应助无尘采纳,获得10
21秒前
科研通AI2S应助无尘采纳,获得10
21秒前
搜集达人应助无尘采纳,获得10
21秒前
深情安青应助无尘采纳,获得10
21秒前
大个应助无尘采纳,获得10
21秒前
李健的小迷弟应助无尘采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055485
求助须知:如何正确求助?哪些是违规求助? 2712292
关于积分的说明 7430453
捐赠科研通 2357116
什么是DOI,文献DOI怎么找? 1248604
科研通“疑难数据库(出版商)”最低求助积分说明 606750
版权声明 596093