Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
12we完成签到 ,获得积分10
1秒前
1秒前
2秒前
学不懂数学应助茶茶采纳,获得20
2秒前
隐形曼青应助旧辞采纳,获得10
2秒前
何佳完成签到,获得积分10
3秒前
烟花应助coco采纳,获得10
3秒前
小晶完成签到,获得积分10
3秒前
zimablue完成签到,获得积分10
4秒前
慕青应助范先生采纳,获得10
4秒前
zzz完成签到,获得积分10
5秒前
6秒前
海盗船长完成签到,获得积分10
6秒前
等待寄云完成签到 ,获得积分10
6秒前
酷波er应助王冉冉采纳,获得10
7秒前
lcjynwe完成签到,获得积分10
8秒前
新奇完成签到 ,获得积分10
8秒前
Misty_发布了新的文献求助10
8秒前
iNk应助不会取名字采纳,获得20
8秒前
Orange应助Hannes采纳,获得10
8秒前
10秒前
多多少少忖测的情完成签到,获得积分10
10秒前
小马甲应助lx采纳,获得10
10秒前
11秒前
阔达冰兰发布了新的文献求助10
11秒前
GAO完成签到,获得积分10
11秒前
yy发布了新的文献求助10
12秒前
12秒前
12秒前
奋斗冬萱完成签到,获得积分10
12秒前
康园完成签到,获得积分10
13秒前
活泼的面包完成签到,获得积分10
15秒前
123456完成签到,获得积分10
16秒前
重要谷冬完成签到,获得积分10
16秒前
深情丸子发布了新的文献求助10
16秒前
16秒前
杰瑞完成签到,获得积分10
18秒前
18秒前
ding应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048