Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syzh发布了新的文献求助10
1秒前
2秒前
科研通AI6应助zheweiwang采纳,获得10
4秒前
坦率紫菜完成签到,获得积分10
4秒前
doctorduanmu发布了新的文献求助10
5秒前
6秒前
123完成签到,获得积分10
7秒前
洒脱发布了新的文献求助10
11秒前
Damtree发布了新的文献求助10
11秒前
动人的代芹完成签到,获得积分10
12秒前
科研通AI6应助博珺辰采纳,获得10
12秒前
SciGPT应助零距离采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
科研通AI6应助yr采纳,获得30
14秒前
柔弱的芷珍完成签到,获得积分10
15秒前
赘婿应助catear采纳,获得10
15秒前
hbhsjk完成签到,获得积分10
21秒前
22秒前
武雨寒发布了新的文献求助10
22秒前
数学情缘完成签到,获得积分10
22秒前
Emi完成签到 ,获得积分10
22秒前
SciGPT应助山水之乐采纳,获得10
23秒前
在水一方应助mont采纳,获得10
23秒前
23秒前
Criminology34应助左西采纳,获得10
24秒前
24秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
25秒前
happyday发布了新的文献求助10
28秒前
29秒前
芃芃完成签到 ,获得积分10
31秒前
32秒前
诺诺完成签到 ,获得积分10
35秒前
36秒前
aaaa完成签到 ,获得积分10
37秒前
mont完成签到,获得积分10
38秒前
38秒前
123456789完成签到 ,获得积分10
38秒前
38秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439